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Abstract 

Advanced theoretical work and establishing theoretical relations is the main 

focus of this work and was achieved via molecular dynamics simulation. By making 

use of statistical mechanics and atomistic modelling, an accurate and reliable database 

on Ni-Zr melts and its diffusion properties is generated, in conjunction with a semi-

empirical many-body interatomic potential for a better understanding of 

thermotransport and thermodynamic properties in the melts, which are used to identify 

possible glass-forming alloys. Comparison of simulation results with existing 

experimental data confirms the molecular dynamics approach used to be quantitative, 

and showcases the importance of theoretical work in this field.  

The developed theoretical approach within the framework of molecular 

dynamics, incorporates the Green-Kubo, as well as the Mori-Zwanzig formalisms, to 

derive expressions for diffusion properties of the melt in terms of time-correlation 

functions. Evaluation of self-diffusion coefficients and the kinetic part of the 

interdiffusion offer a detailed insight into the dynamics of Ni-Zr melts upon 

undercooling. A link between composition and temperature dependencies is 

established. Finally, the observed homogeneous dynamical slowdown of single-

particle and collective diffusion dynamics in the composition range of 0.25 ≲ 𝑐𝑐𝑁𝑁𝑁𝑁 ≲

0.5 reveals enhanced stability of the melt against its crystallisation and therefore 

represents viable glass-formers.  

Further investigation of cross-correlation behaviour of the interdiffusion flux 

and the force caused by the difference in the average random accelerations of different 

atoms of an alloys different components in the hydrodynamic limit 𝑡𝑡 → 0 is presented. 

This is used to determine conditions in terms of a correction factor, 𝑆𝑆, and its 

decomposed parts, namely 𝑆𝑆0 and 𝑊𝑊12. The established theory is then applied on 

different types of melt with i) chemical ordering and ii) phase separation tendency. 

The main findings conclude, that for the first type of melt: 𝑆𝑆 < 𝑆𝑆0 (𝑊𝑊12 < 0); 

meanwhile for the second type of melt: 𝑆𝑆 > 𝑆𝑆0 (𝑊𝑊12 > 0) describing the atomic 

ordering behaviour. 
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Chapter 1: Introduction 

This dissertation has been created for fulfilment of the requirements for the 

degree of Doctor of Philosophy in Mechanical Engineering. This work follows the 

layout of a thesis by publication including peer-reviewed work. The thesis author is 

the lead author of the included publication and book chapter. Detailed statements for 

author contributions are listed in the Appendix.  

Chapter 2 talks briefly about the concepts of physical processes that are essential 

for this topic, and serves to familiarise the reader with fundamental background about 

the relationship of internal factors affecting material properties. Next, the material 

metallic glass is drawn out, as it possesses peculiar material properties and its 

production and development can be accelerated with results obtained in this study. 

Then, computational approaches used in this field are showcased, followed by the 

approach implemented in this thesis: molecular dynamics. Progress within the field of 

molecular dynamics simulation and how this work complements the area of research 

are contained in Chapter 2.  

Chapter 3 gives a detailed insight into liquid binary alloys of the Ni-Zr system 

studied via the molecular dynamics simulation. The included publication retains its 

original table and figure numbering as appeared in print, with the reference list at the 

end of the publication. Followed by supporting material, elaborating on calculations 

to confirm the onset of crystallisation of the model systems and further, the calculation 

of the kinetic part of the interdiffusion coefficient. The chapter establishes theoretical 

relations that are essential for the solidification process of binary melts and enables the 

quantitative prediction of material properties. 

Chapter 4 briefly outlines previous studies of the binary alloys of Ni-Al and Cu-

Ag, and categorises them into different types of melt with i) chemical ordering and ii) 

phase separation tendency. This establishes a foundation used for Chapter 5.  

A thorough analysis of different type behaviours of the different melts is 

summarised in Chapter 5 and gives detailed insights into the theoretical background. 

The included manuscript of the published book chapter retains its own table and figure 

numbering as appeared in the published manuscript, with the reference list at the end 
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of the publication. Novel understandings for the different types of melt and their 

atomic ordering behaviour are established and conferred. 

New insights and results are examined and put into contrast in the discussion 

section in Chapter 6. Lastly, Chapter 7, concludes the achieved contributions to the 

field of research and provides a brief outlook. 
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Chapter 2: Literature Review 

The world is developing rapidly and with it come new challenges, or, more 

optimistically, new opportunities. The constant drive to improve is prevalent. In sports 

we strive to achieve better, keep breaking personal bests, with a constant determination 

to set new world records. No record seems unbreakable. The ceiling of what is 

humanly possible is continually broken through. This is a consequence of many 

factors. For one, an ever increasing research of the right techniques, better training and 

advancements in technologies used for the equipment. In the field of engineering we 

see similar trends. Applications become more complex, requirements more extreme 

and with an ever rising demand. All of this accompanied by a need to increase the 

efficiency of the product while ideally decreasing time and costs of its development 

and production. For this reason, new technologies and materials are required. The 

design of new materials is subject to an often very specific set of required material 

properties. Those are defined by the material’s microstructure. Hence it is evident that 

the field of materials science plays a crucial role in the research, development and 

design of new applications. On this matter, this thesis focuses on the microstructure of 

engineering materials, specifically metallic glass. Further how diffusion, 

thermotransport and thermodynamic properties that arise in the molten state during 

solidification, affect the microstructure and with it, the material properties. The content 

of this work establishes theoretical relations and gives insight into phenomenological 

correlations in the melt at atomic scale, using molecular dynamic simulation. Obtained 

results are collected and a self-consistent database is created. This work addresses the 

challenges of today and opens the door to break new records, achieve improvements 

and take on new opportunities. 

This chapter begins with the concepts of diffusion (Section 2.1) and enthalpy 

(Section 2.2), to familiarise the reader with fundamentals of the physical processes. 

The sections are kept very short due to further elaboration in Chapters 3 and 5, where 

specific materials investigated are referred to. Next, the material metallic glass 

(Section 2.3) is identified and their key manufacturing methods, properties and uses 

are outlined. A brief overview about computational methods used in this field is shown 

(Section 2.4). Finally, the approach of molecular dynamics implemented is presented, 
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as it bridges the gap and advances the understanding, development and production of 

metallic glasses and associated fields of materials science. Sections 2.6 and 2.7 

highlight implications from the discussed literature and advance the framework of this 

study. 

 

2.1 DIFFUSION 

The concept of diffusion describes the matter process of transportation within a 

system due to molecular motions leading to complete mixing. This type of phenomena 

can be seen in numerous cases. Just as when two bodies at a temperature difference 

are brought into thermal contact will exchange thermal energy until they reach an 

equilibrium, and just as two bodies at a different pressure when brought into 

mechanical contact will exchange volume until at an equilibrium, the two bodies at 

different species concentrations brought into diffusive contact will exchange particles 

until at a molecular equilibrium.  

Principally speaking, the molecular motions are random, hence their behaviour 

is independent from one another. The molecules experience constant collisions during 

the diffusion process and as a result move towards a region of either a higher, or lower 

concentration, seeking equilibrium. The path of motion can be described as a random 

walk throughout which its mean-square distance can be calculated. Hence in a given 

time interval, it is possible to obtain the displacement while it is not possible to 

determine the direction of a molecule at that time. The diffusion process can take up a 

very long period of time since the speed of mixing can be slow [1,2]. Following some 

reference numbers of progression rates to give a rough idea on the range that these 

processes can happen: i) in a gas: 5 cm/min, ii) in a liquid: 0.05 cm/min, and iii) in a 

solid down to 0.00001 cm/min [2]. Diffusion and its importance is universal, not only 

limited to the field of engineering. The slow diffusion progression rate of the process 

is often the reason that limits the overall rate of a sequence of various processes, since 

it usually occurs in combination with other phenomena. For example it restricts the 

efficiency of distillation and industrial reactions including catalysts. In the field of 

biology, it limits the absorption rate of nutrients by the human intestine. More 

examples to showcase the universal impact of diffusion are the corrosion rate of steel, 
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the growth of microorganisms needed to produce penicillin, and the release of odour 

and flavour from food [2]. 

By making use of diffusion coefficients, Fick’s law of diffusion describes a 

mathematical model of the phenomena [3]. In a multicomponent system with constant 

pressure and temperature, the movement of an atom of type i within a unit of time 

passing through a unit of area within a system, is described as the mass flux, 𝐽𝐽𝑥𝑥. Its 

direction moves along a concentration gradient in the direction of a reduction of 

concentration [4]. According to Fick’s first law of diffusion: 

𝐽𝐽𝑥𝑥 = −𝐷𝐷∇𝑐𝑐𝑁𝑁           (1) 
 

 

Figure 1 Fick’s first law of diffusion 
 

Where the mass flux 𝐽𝐽𝑥𝑥 and the concentration gradient ∇𝑐𝑐𝑁𝑁 are in opposite directions, 

the intrinsic diffusion coefficient is presented as 𝐷𝐷. A more accurate description of its 

behaviour is given by its proportionality to the gradient of their chemical potential, 

namely ∇𝜇𝜇𝑁𝑁. In fact, this gradient has been identified to be the main influence on 

diffusion and intermixing processes of a system [2]. The Onsager formalism describes 

this statement with its phenomenological flux equations for an isothermal A-B system 

in liquid and solid phases as follows: 

𝐽𝐽𝐴𝐴 = −𝐿𝐿𝐴𝐴𝐴𝐴∇𝜇𝜇𝐴𝐴 − 𝐿𝐿𝐴𝐴𝐵𝐵∇𝜇𝜇𝐵𝐵          (2) 
𝐽𝐽𝐵𝐵 = −𝐿𝐿𝐴𝐴𝐵𝐵∇𝜇𝜇𝐴𝐴 − 𝐿𝐿𝐵𝐵𝐵𝐵∇𝜇𝜇𝐵𝐵          (3) 
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In a liquid phase the description of the flux equations are applicable in the 

reference frame of mean-volume where experiments are taken. In a solid phase the 

description of the reference frame is fixed to the atomic crystal lattice. 

Diffusion processes obey the conservation law which implies that the number of 

diffusing atoms of each species must be conserved. Required for Fick’s second law, 

the following equation, also known as the continuity equation stands as: 

−∇𝐽𝐽𝑁𝑁 = 𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝜕𝜕

                𝑖𝑖 = 𝐴𝐴,𝐵𝐵, …          (4) 
 

This equation in combination with Fick’s first law results in Fick’s second law: 

𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝜕𝜕

= ∇(𝐷𝐷∇𝑐𝑐𝑁𝑁)                𝑖𝑖 = 𝐴𝐴,𝐵𝐵, …           (5) 
 

Hence, it can be seen that the diffusion coefficient depends on the concentration 

of the system, therefore it is composition dependent. Though in the case of a small 

concentration gradient, it can be approximated as a constant value. The diffusion 

process is also dependent on temperature, following the Arrhenius law: 

𝐷𝐷 = 𝐷𝐷0 𝑒𝑒𝑥𝑥𝑝𝑝 �− 𝐸𝐸𝐴𝐴
𝑘𝑘𝑘𝑘
�            (6) 

 

Where 𝐷𝐷0 denotes the exponential pre-factor, while 𝐸𝐸𝐴𝐴 describes the activation energy. 

In the following subsections, two different types of diffusion will be elaborated 

further. When looking at many-particle systems and their interactions, it is crucial to 

separate between single-particle and collective diffusion processes that arise in the 

melt. 

 

2.1.1 Single-Particle Diffusion 

The first type of diffusion describes the movement of individual atoms of one 

species within a system in terms of the self-diffusion coefficients and concentration of 

the tracer atoms, respectively 𝐷𝐷 and 𝑐𝑐𝑁𝑁 from Equation (5). For the evaluation of the 

self-diffusion coefficients, a tracer is established within a known concentration 

gradient. The denotation of the tracer diffusion coefficient of atoms of type 𝑖𝑖 is 𝐷𝐷𝑁𝑁∗. In 

order to physically observe the process of diffusion on a macroscopic level, one needs 



 

Chapter 2: Literature Review 15 

to establish a concentration gradient. Now, for pure metals, a radioactive tracer or 

isotope is used. Since the chemical concentration gradient (see Sec. 2.1.2) of the 

material and its tracer are equal, assuming no isotopic effect, the resulting measured 

process is known as the self-diffusion coefficient. As mentioned earlier, the process of 

diffusion describes matter transport by random particle motion at atomic scale, also 

known as Brownian motion [2]. This theory is closely related to the mean square 

displacement of atoms of different species, while the tracer diffusion coefficient, 𝐷𝐷𝑁𝑁∗, 

of atoms of species 𝑖𝑖 is associated to the displacements of atoms of type 𝑖𝑖 directly. 

Numerical and experimental methods can be used to determine the tracer and 

concentration gradients, the latter is considered a direct method and the former an 

indirect. Therefore, the computational approach used here is an indirect method to 

calculate diffusion properties. Indirect methods make use of microscopic model 

systems to obtain the mean squared displacement of atoms. On this basis and by 

making use of the Einstein-Smoluchowski relation describing the displacement of 

particles on a cubic lattice and the diffusion coefficient [5,6]. The self-diffusion 

coefficients are obtained with the following equation:  

𝐷𝐷𝑁𝑁∗ = 1
6𝜕𝜕

 〈∆𝑟𝑟2〉         (𝑖𝑖 = 𝐴𝐴,𝐵𝐵)         (7) 
 

With 〈∆𝑟𝑟2〉 describing the mean square displacement of atoms during time 𝑡𝑡. This can 

also be written as ∆𝑟𝑟𝛼𝛼2(𝑡𝑡) =  1 𝑁𝑁𝛼𝛼⁄ ∑ ∆𝑟𝑟𝛼𝛼𝑁𝑁2(𝑡𝑡)𝑁𝑁𝛼𝛼
𝑁𝑁=1  in order to represent the time 

displacement of a single atom of species 𝛼𝛼, with 𝑁𝑁𝛼𝛼 denoting its number of atoms (𝛼𝛼 =

1,2). 

 

2.1.2 Collective Diffusion 

The second type of diffusion occurs in the presence of a gradient of chemical 

composition and is also known as chemical- or interdiffusion. This type of diffusion 

considers a large number of particles and its interactions between each other. The 

resulting coefficient is represented as 𝐷𝐷�. Due to effects that arise from the chemical 

composition gradient, the values of self-diffusion and interdiffusion differ. According 

to Fick’s second law, the diffusion equation in a single dimension, 𝑥𝑥, can be written 

as: 
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𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝐷𝐷�(𝑐𝑐𝑁𝑁)
𝜕𝜕2𝑐𝑐𝑖𝑖
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕𝐷𝐷�(𝑐𝑐𝑖𝑖)
𝜕𝜕𝑐𝑐

�𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝑥𝑥
�
2

                      𝑖𝑖 = 𝐴𝐴,𝐵𝐵    (8) 

 
With 𝑐𝑐𝑁𝑁 describing the mole fraction related to the diffusing component. It is a function 

dependent on time and space, 𝑡𝑡 and 𝑥𝑥 respectively, while 𝐷𝐷�(𝑐𝑐𝑁𝑁) denotes the 

interdiffusion coefficient. If a constant molar volume during the diffusion process is 

assumed such that 𝐷𝐷�(𝑐𝑐𝑁𝑁) =  𝐷𝐷0, then the Equation (8) term can be rewritten as: 

𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝐷𝐷0
𝜕𝜕2𝑐𝑐𝑖𝑖
𝜕𝜕𝑥𝑥2

                                    𝑖𝑖 = 𝐴𝐴,𝐵𝐵      (9) 

 
The chemical diffusion coefficient is used to describe the changes in the 

concentration profiles. Atoms are affected by varying chemical environments that 

result during interdiffusion experiments. With a variation of the chemical composition 

into different diffusion zones, the diffusion coefficients may diverge as well. This 

collective process occurs in binary and multicomponent systems and hence depends 

on the composition.  

Generally speaking, there are two methods used for the determination of the 

collective diffusion coefficient. The first option is through real experiments using 

phenomenological analysis on macroscopic level [7-9]. The second option takes the 

computational route by making use of atomistic modelling and molecular dynamics 

simulations [10-16].  

 

2.2 ENTHALPY 

The concept of enthalpy, 𝐻𝐻, describes a thermodynamic property of a system in 

form of its total energy. It consists of its internal energy, 𝑈𝑈, in addition to the product 

of its pressure and volume, 𝑝𝑝 and 𝑉𝑉 respectively, given by the following equation: 

𝐻𝐻 = 𝑈𝑈 + 𝑝𝑝𝑉𝑉          (10) 
 

In simple terms, this property refers to the heat and work that is added/ removed 

from a system at a constant pressure. This extensive property cannot be measured 

directly, a reference point must be defined first. Then, the measured difference of 

energy between reference points gives physical meaning to the thermodynamic 

potential. Hence the change in enthalpy, ∆𝐻𝐻, is the common expression for the change 
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of energy of a system denoting its transfer of energy. A negative change in ∆𝐻𝐻 implies 

a loss of heat, also known as an exothermic reaction; meanwhile a positive change in 

∆𝐻𝐻 implies an addition of heat, also known as an endothermic reaction.  

 

2.3 METALLIC GLASS 

The development and drive of the world of engineering is always progressing 

forwards and with it, the need for more advanced materials with specialised properties. 

To face the new tasks and challenges, new and advanced solutions are required. In a 

similar manner, new applications face harder and tougher conditions while it is crucial 

to ensure their quality and safety. It is therefore important to understand the materials 

creating those applications, to get the best results. One interesting range of materials 

with such advanced properties are metallic glasses. The materials, as result of their 

amorphous structure, possess a variety of amplified mechanical and electrical 

properties compared to crystalline materials. Metallic glass can be produced near net-

shape, are much stronger than steel, while also being corrosion resistant. Their unique 

material properties open the door to a wide range of applications, from micro-

components to structural applications.  

At present however, the production of metallic glass is still very difficult. One 

of the reasons slowing down its progress is a lack of understanding in the field of 

diffusion. Processes occurring during diffusion of the different materials with each 

other, determine the formation of the microstructure and hence, the resulting material 

properties. Gaining a better understanding of thermotransport and thermodynamic 

properties in the melt will lead to profound knowledge of its solidification and 

therefore, will speed up the development and production of metallic glasses.  

 

2.3.1 Historical Background 

In 1960 Klement, Willens and Duwez produced the first metallic glass at Caltech 

[17]. The reported Au75Si25 alloy was created by rapidly quenching the material from 

~1300℃ to room temperature with a cooling rate of ~106 K/s. The exceedingly fast 

cooling rate was required to avoid crystallisation within the material. The high cooling 

rate effectively limited the thickness of the sample within the micrometer range. In the 
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1960s, progress and development of metallic glass advanced with Chen and Turnbull 

and their work with ternary systems, producing the first bulk metallic glass with a 

diameter of up to 1 mm [18,19]. Constant improvement of the development method 

resulted in an increase of the possible sample sizes. New understandings of the material 

were found and used to even further increase the ability for production of metallic 

glasses. In 1984, the critical casting diameter of a Pd-Ni-P melt had increased to 10 

mm, achieved by processing it in a boron oxide flux [20]. The next big step to improve 

the production even further was advanced by the discovery of a variety of multi-

component systems, where cooling rates of less than 100 K/s allowed an increase of 

their thickness up to several centimetres [21-23]. The pentary 

Zr41.2Cu12.5Ni10Ti13.8Be22.5 system, also known as Vitreloy 1, is the first commercial 

bulk metallic glass with a cooling rate of 1 K/s [24]. New technologies and advanced 

insight into materials science pushes the production of metallic glasses forward and 

allows the fabrication of components of several kilograms. Furthermore, it enables an 

increase of their critical casting thickness of more than tree orders of magnitudes, 

compared to the early 1990s with many multi-component systems found to be viable 

glass formers [25]. 

 

2.3.2 Structure and Properties 

The microstructure of a material relates directly to its properties, or in other 

words, material properties are defined by their microstructure. Understanding these 

relationships helps for the design of new and improved materials. Metallic glasses are 

usually produced by melt processing, resulting in an amorphous structure. Atoms are 

randomly arranged, like in a liquid. In fact, all alloys retain an amorphous structure in 

the molten state, the majority then crystallises when cooled down and therefore, most 

of the common metals possess a crystalline structure.  

The crystalline structure consists of grains and grain boundaries, commonly 

known to be weak spots in crystalline materials. Failure of the material, i.e. cracks or 

corrosion, can develop and propagate through these weak-spots. Depending on the 

arrangement of the crystals, the material exhibits beneficial strength in only one 

direction. This is the case for ceramics. The nature of ceramics is brittle, while 

extremely strong under compression but failing fairly easy under a tensile load.  
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An amorphous structure is densely packed. A metallic glass usually consists of 

two or more different elements of atoms of radii different sizes. The ratio of the 

mixture plays an important role of how well atoms distribute, and therefore define the 

packing density of the material. Atoms gridlock into a stable composition that does not 

plastically deform, giving the material equal strength in all directions, in contrast to 

ceramics which are only one-directional. This results in a brittle behaviour, similar to 

ceramics, which leads to catastrophic failure without plastic strain and is considered a 

safety risk. The impact on safety and unpredictability of the material prevents metallic 

glasses even today, to be a more viable option in fields of aerospace, structural and 

biomedical applications.  

To overcome this hurdle, a better insight into atomic dynamics during 

solidification is needed, that define the structure and therefore the properties of the 

material. With a better understanding of the phenomena processes in the melt and the 

amorphous structure, the viability of metallic glass in a lot of different fields can be 

increased significantly. Some of the key material properties of metallic glass include 

very high strength, hardness and fracture toughness, as well as high elastic energy, 

corrosion resistance and wear resistance, especially under extreme conditions. Beside 

mechanical properties, the microstructure also grants excellent magnetic and acoustic 

properties, e.g. the ability to shield environmental noise or acoustic sound. One can 

clearly see the enormous potential of metallic glass and its applications, hence research 

into thermotransport and thermodynamic properties that define the microstructure is 

crucial for progress and development in the field of materials science, and especially 

for such an outstanding material like metallic glasses. On this matter, experimental 

approaches and numerical methodologies are used to complement each other, for a 

detailed and thorough investigation into the relationship of diffusion and material 

properties. 

 

2.3.3 Production 

Metallic glass is obtained through several production routes. The synthesis of 

the material is then followed by several different manufacturing options. This 

subsection gives a short overview of some of the available technologies. First, the 

preparation can be categorised in three different type of processes: i) vapour state 

processing ii) liquid state processing and iii) solid state processing.  
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Looking into the options of vapour state processing, three variations are the most 

commonly used and feasible: physical vapour deposition [26,27], chemical vapour 

deposition [28] and ion implantation [29]. While each of the named techniques have 

their benefits, the most environmentally friendly and economical process option 

among the three is the physical vapour deposition. In general however, vapour state 

processes are expensive and depending on the situation, sometimes not the most viable 

option.  

Liquid state processing is less expensive than physical vapour deposition, while 

also possessing a lower cooling rate. Most common options for instance are: rapid 

solidification processing, droplet method, jet method, surface melting techniques and 

splat quenching [30].  

Lastly, solid state processing is usually achieved via mechanical alloying of the 

elements. This is a metallurgy technique using powders, developed in the 1960s 

[30,31]. After completion of the synthesis of the material, manufacturing routes 

include several forms of casting [25] and thermoplastic forming [32]. Making use of 

their atomic structure, the manufacturing routes allow for near net-shape processing of 

metallic glasses.  

 

Figure 2 TTT-diagram schematic 
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Casting methods avoid crystallisation of the material, as can be seen in Figure 2, 

where the desired cooling rate is indicated by the red line. Novel techniques are being 

developed and improved to further increase the controllability of the properties of the 

resulting microstructure [33-35]. This results in a homogeneous microstructure within 

the material. With this methodology, internal stress arises within the sample, due to 

the rapid cooling. Thermoplastic forming, indicated by the lower blue line, benefits 

from the softening that occurs as a result of reheating the material above its glass 

transition temperature 𝑇𝑇𝑔𝑔. Here, the glass is kept in a metastable supercooled liquid 

region before crystallising, giving the material a very high formability. This novel 

processing technique requires very careful control of the heating and cooling rates. It 

also includes a greater number of production steps compared to the casting 

methodology, due to the extra forming and cooling processes. However, the resulting 

quality is far higher compared to traditional casting and provides the ability to produce 

very intricate shaped geometries. This increase in quality makes up for the extra effort 

needed. 

 

2.3.4 Applications 

The peculiar structure translates into a variety of beneficial material properties, 

making metallic glass outstanding compared to their crystalline counterparts. This 

opens up a wide range of applications from military, medical to leisure and sport 

products. Their extremely high formability, allowing for small and intricate shaped 

parts, is just one of many driving factors for their use as electrode materials, sporting 

equipment and die material. As mentioned earlier, a better understanding of the 

formation processes is crucial to improve the development and production of metallic 

glasses, and help to overcome the hurdle of unpredictability in terms of failure and 

safety risks. The following section lists a few examples, showcasing the current 

versatility of metallic glasses. 

A low elastic modulus and a high strength-to-weight ratio are perfect for many 

types of sport equipment i.e. golf clubs, bicycle frames, tennis rackets, marine 

applications or skis and snowboards. Considering their application in golf clubs, and 

how the material affects the performance, as an example. The amorphous structure 
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results in a great restitution coefficient, meaning that the hysteresis loss is negligible. 

Where common steel clubs lose roughly 40 % of the input energy during its transfer 

to the ball, metallic glass golf clubs lose only around 1 %. Therefore, the ball needs 

less input energy to travel the same distance [36]. 

Next, the easily formable, strong and light material finds use in the production 

of casings for mobile phones. The scratch resistant materials assure good protection of 

expensive phones and personal electronics whilst maintaining a desirable aesthetic due 

to their microstructure. The material allows the production of very thin casing, that 

retains necessary mechanical strength to withstand operational requirements [37].  

Further, medical applications are of great importance and the integration of 

metallic glass components that are biocompatible and non-allergic are of significant 

commercial interest. Wear resistance with a high strength-to-weight ratio are ideal for 

the use as surgical instruments and prosthetic implants. The ability to form the material 

down to atomic level reduces the cost of post-processing significantly, obtaining the 

desired surface structure and form near net-shape easily [38]. 

Lastly, one could say sky is the limit when it comes to the wide possible range 

of applications for metallic glass, closing this section with an aerospace example. On 

NASA’s space mission Genesis in 2004 to collect solar wind samples in space, the 

hexagonal collector tiles needed to withstand extreme operational conditions. 

Fulfilling the many physical and mechanical requirements, a zirconium based 

multicomponent metallic glass system was chosen to measure the composition of 

isotopes in solar matter [39].  

 

2.4 OVERVIEW OF COMPUTATIONAL APPROACHES IN THE FIELD 

Making use of computational methods and simulations, it is possible to learn 

more about thermotransport and thermodynamic properties that arise in the melt during 

solidification. With an increase of the use of atomic scale modelling and its importance 

in industrial and commercial communities, it is becoming increasingly important to be 

able to quantitatively predict diffusion behaviour, obtain reliable results, and 

accompany experimental studies. Theoretical and computational materials science 

supports the development in this area and leads the way to a more profound and useful 

understanding using advanced simulation techniques and theoretical approaches that 
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enable the research, development and production of new materials and their properties. 

The shown approaches give insight into material properties at microscopic scale, 

meanwhile studying macroscopic observations of computational controlled scenarios, 

avoiding limitations of real-life performed experiments. An overview of the latest 

computational approaches is given in the following sub-sections. 

 

2.4.1 First-Principles Molecular Dynamics 

The first-principles (FP) or also known as ab-initio molecular dynamics, is a 

form of the molecular dynamics family and was introduced by Car and Parrinello in 

1985 [40]. Making use of statistical mechanics, it allows for the study of materials on 

an atomic level. It is implemented when knowledge of atomic structures is limited and 

statistical averages of the atomic trajectories dependent on time are needed to describe 

the thermodynamic evolution of the system as a function dependent on temperature. 

In conjunction with the density functional theory (DFT), the method emerged as a 

powerful tool to describe the interaction of atoms and electrons using quantum 

mechanics. This method is a great option for calculations of ground-state properties, 

because it scales reasonably with system size allowing for good accuracy of properties 

and feasible computational cost [41,42]. More about density functional theory will 

follow in the next section (Section 2.4.2). 

In first-principles molecular dynamics (FPMD) [42,43], atomic nuclei are 

treated as classical particles, which is also the case for classical molecular dynamics. 

The difference to classical molecular dynamics is how forces acting on atoms are 

handled, FPMD considers them to be quantum mechanical. Meaning, that they 

originate from electronic-structure calculation. As a consequence of this assumption, 

quality of results differs, making only the electronic subsystem precise. This is due to 

large mass discrepancies between nuclei and electrons. Depending on the studied 

system, those nuclear quantum effects can become relevant. Elements such as 

Hydrogen, as a result of their very low mass, are affected by the previously mentioned 

effects in a much stronger manner. The ab-initio integral can then be used for the 

calculations, which unfortunately is a computationally expensive process. 

Characterising the physical state of the system, the Lagrangian function is used, 

as shown in Eq. 11. This takes into consideration the ions of the system with respect 
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to their coordinates 𝑅𝑅𝑁𝑁, as well as electrons, which are defined via a set of orbitals 

𝜓𝜓𝑗𝑗(𝑟𝑟) [42]: 

ℒ𝐶𝐶𝐶𝐶 = 𝜇𝜇 ∑ ∫��̇�𝜓(𝑟𝑟)�2𝑑𝑑𝒓𝒓 + 1
2
∑ 𝑀𝑀𝐼𝐼�̇�𝑹𝐼𝐼2𝑁𝑁
𝐼𝐼=1𝑁𝑁 − 𝐸𝐸𝜕𝜕𝑡𝑡𝜕𝜕[{𝜓𝜓𝑁𝑁}; {𝑹𝑹}] −∑ 𝜆𝜆𝑁𝑁𝑗𝑗�∫ 𝜇𝜇𝜓𝜓𝑁𝑁

∗(𝒓𝒓)𝜓𝜓𝑗𝑗(𝒓𝒓)𝑑𝑑𝒓𝒓 − 𝛿𝛿𝑁𝑁𝑗𝑗�𝑁𝑁𝑗𝑗  (11) 
 

Therefore, the total energy of a system in FPMD, 𝐸𝐸𝜕𝜕𝑡𝑡𝜕𝜕[{𝜓𝜓𝑁𝑁}; {𝑹𝑹}], is based on 

the ionic and electronic variables. This approach of the total energy represents the 

potential energy in classical molecular dynamics simulations. As a consequence of 

degrees of freedom, its analytical form is inaccessible and requires the addition of 

further theories. A good example of this is the use of density functional theory (see 

Section 2.4.2) and its theoretical model to obtain total energy and insight on the 

properties of a system. The total kinetic energy is shown in the second part of Eq. 11 

and depends on 𝑅𝑅𝑁𝑁. If considering only these two terms of the Langrangian, the method 

could be described as Born-Oppenheimer (BO) molecular dynamics. Here, for each 

set of ionic coordinates the electrons lay on the ground state of the Born-Oppenheimer 

surface and forces calculated accordingly. According to Massobrio et al. [42] this 

method, which is principally feasible, needs optimisation in form of electronic 

structure through convergence of the orbitals to their ground state value for each time 

step. As a result, the computational cost and time consumption rises significantly. This 

can be circumvented by introducing the CP Lagrangian as can be seen in Eq. 11, where 

the first term describes the kinetic energy measuring the departure of the orbitals from 

the BO surface. With the introduction of 𝜇𝜇, representing a fictitious mass, a dynamical 

character is attributed to electronic wave functions. This creates a way to correspond 

between the time evolution of trajectories and the concept of systems at equilibrium 

from a statistical mechanics perspective. This unification of statistical mechanics and 

electronic structure calculations makes the CP approach a state-of-the-art technique in 

the field of condensed matter. 

 

2.4.2 Density Functional Theory 

One rapidly developing approach is the already mentioned density functional 

theory, introduced by Hohenberg and Kohn [44] in 1964 and also by Kohn and Sham 

[45] in 1965. DFT is a numerical model from first principles. Most models apply broad 

assumptions, examining comparatively macroscopic statistical average of particle 
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thermodynamics. Here, DFT attempts to directly model at a level very close to the 

building blocks of all matter. Its application is very useful for the modelling of diverse 

materials in the field of materials science, engineering, physics and chemistry. The 

theory uses the quantum behaviour of atoms and molecules to model larger physical 

phenomena, such as diffusion kinetics. One could say the solution of the Schrödinger 

equation, is achieved through settings of practical value via the DFT approach. This 

description is an incredible step towards a fundamental understanding of the 

underlying meaning of the Schrödinger equation, relating to the theory of matter, 

describing our universe and its existence. A brief introduction to the technique and 

governing equations is discussed in this section.  

Representing a many body problem, the interaction of 𝑁𝑁 electrons in a system is 

investigated. The interactions take place between all electrons, as well as the atom 

nucleus. By making use of the exchange-correlation potential, these interactions are 

replaced by an approximate potential, acting on one single electron. For the description 

of the energy of molecules or atoms and how it changes when they are in motion, one 

needs to define the position of the nucleus and the electrons of atoms. As a result, fixed 

positions for atomic nuclei need to be solved with equations that describe the motion 

of electrons. According to the Hohenberg- Kohn theorem [44], the fundamental energy 

of a system is determined by a functional of the electronic density. 

The Born-Oppenheimer approximation is then used, which reduces the degrees 

of freedom. Due to the big difference of the nuclei and electrons, their dynamics can 

be decoupled. Hence, it separates mathematical problems of nuclei and electrons in 

their ground state, the lowest energy state. In quantum mechanics, the wave function 

describes the quantum state of a set of particles in an isolated system. Here, the 

electronic wave function is now depending upon the nuclear positions, but not their 

velocities. Making use of the adiabatic potential energy surface of atoms function one 

can approach the question of how the energy changes once atoms are in motion. One 

way of dealing with this, is by utilising an approach of the Schrödinger description, 

shown in Eq. 12: 

 

�− ℏ2

2𝑚𝑚
∑ ∇𝑁𝑁2 + ∑ 𝑉𝑉(𝑟𝑟𝑁𝑁) + ∑ ∑ 𝑈𝑈�𝑟𝑟𝑁𝑁 , 𝑟𝑟𝑗𝑗�𝑗𝑗<𝑁𝑁

𝑁𝑁
𝑁𝑁=1

𝑁𝑁
𝑁𝑁=1

𝑁𝑁
𝑁𝑁=1 �𝜓𝜓 = 𝐸𝐸𝜓𝜓   (12) 
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With 𝑚𝑚 describing the mass of the electron. The first term inside the brackets define 

the kinetic energy for each electron, the second term the interaction energy between 

each electron and the collection of atomic nuclei and lastly the third term is the 

interaction energy between different electrons. In this case [46], the Hamiltonian was 

chosen with 𝜓𝜓, the electronic wave function, that represents a function of each of the 

spatial coordinates of each of the 𝑁𝑁 electrons. Hence 𝜓𝜓 = 𝜓𝜓(𝑟𝑟1, … , 𝑟𝑟𝑁𝑁), with 𝐸𝐸 

describing the lowest energy state of the electrons. Since the energy of the electrons 

ground state is independent of time, it represents the time-independent Schrödinger 

equation. 

Further, the density of electrons at a certain position 𝑛𝑛(𝑟𝑟) is closely related and 

is a function of three coordinates. The individual electron wave function can then be 

written as: 

𝑛𝑛(𝑟𝑟) = 2∑ 𝜓𝜓𝑁𝑁∗(𝑟𝑟)𝑁𝑁 𝜓𝜓𝑁𝑁(𝑟𝑟)     (13) 

 

In Eq. 13 all wave functions from individual electrons occupied by electrons are 

covered by the summation; meanwhile the part inside of the summation describes the 

energy of an electron in its individual wave function 𝜓𝜓𝑁𝑁(𝑟𝑟) to be located at position 𝑟𝑟.  

Application of the Hohenberg- Kohn theorem implies, that the ground-state 

properties of the system are determined by the electron density. Consequently, the total 

ground-state energy of a many-body system consisting of many electrons, is a unique 

functional of the electron density. Finally, to find the ground state electron density, the 

functional needs to be minimized. While the wave functions are related to the 

electronic density, when using the density function theory approach, they are used as 

a mathematical tool for determination of density. Kohn- Sham equations [45], a set of 

Schrödinger-like equations, address the reformulated problem statement for the 

electronic density. These are solved self-consistently with the average potential 

depending on the electronic density. The developed theory investigates the ground 

state properties and therefore, is not valid for electronic excitations. This leads to 

under-estimation of the electronic gap, and van der Waals interaction is not well 

defined. 

This approach is a powerful tool to obtain insights into intrinsic properties of a 

wide range of important materials, and pursue further understanding of predictive 
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materials science, bridging the gap between simulation and experiments. This 

technique is widely used in advancing studies around the world and is bound to become 

even stronger due to its diversity. In conjunction with FPMD [42,43], this approach is 

advantageous for the prediction of materials behaviour and phenomena at atomic scale 

as it has been demonstrated by Massobrio et al in [42]. The quality and accuracy of 

this approach is excellent for predictive purposes to describe properties of even very 

complex materials.  

 

2.4.3 Monte Carlo Simulations 

The concept of Monte-Carlo (MC) simulations can be described as a type of risk 

analysis. This is performed via the creation of models of possible outcomes by 

substitution of a probability distribution for any uncertain factors. Then, it re-calculates 

new results based on computational algorithms, making use of a different set of 

random values of the probability functions. This mathematical approach gives a model 

of risk or uncertainty of a system and is often used to solve problems of optimisation, 

numerical integration, or different cases related to probability distributions. In the 

world of physics, the MC method simulates systems with multiple degrees of freedom, 

i.e. disordered materials, fluids, solids and cellular structures where particles of the 

system interact with each other. The mathematical technique evaluates 

multidimensional definite integrals with complex boundary conditions. In the field of 

engineering it is used to predict system failures. 

For the evaluation of multivariable integrals in statistical physics, one of the 

originating problems of a system, is its unknown Hamiltonian, at a given temperature 

and following Boltzmann statistics. To compute a solution, one needs to obtain the 

mean value of macroscopic variables, i.e. A over a phase space PS. By making use of 

the Boltzmann distribution, the mean value of A is calculated by: 

 

〈𝐴𝐴〉 = ∫ 𝐴𝐴𝑟𝑟𝐶𝐶𝑃𝑃
𝑒𝑒−𝛽𝛽𝐸𝐸𝑟𝑟��⃗

𝑍𝑍
𝑑𝑑𝑟𝑟           (14) 

 

Where 𝐸𝐸(𝑟𝑟) = 𝐸𝐸𝑟𝑟 describes the energy of the system for a state that is given by a 

vector 𝑟𝑟, with all degrees of freedom and 𝛽𝛽 ≡ 1/𝑘𝑘𝐵𝐵𝑇𝑇. Then for the partition function: 
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𝑍𝑍 = ∫ 𝑒𝑒−𝛽𝛽𝐸𝐸𝑟𝑟��⃗𝐶𝐶𝑃𝑃 𝑑𝑑𝑟𝑟          (15) 
 

Solving this approach requires an exact enumeration of all possible configurations of 

the systems, to then calculate averages at will. This method is used in exactly solvable 

systems and simulations of simple systems with only few particles. In realistic systems 

those numbers are significantly higher, hence an exact enumeration is very challenging 

if not impossible to implement. This size limitation strongly influences the 

computation time, a more realistic system would become very expensive in 

computational costs, making most simulation infeasible. 

However, approaches that make use of MC algorithms can still be worked with 

very efficiently to perform a variety of simulations. Therefore it is considered to be an 

effective tool to obtain insights into phenomena inaccessible through experiments, 

helping to close the gap between experiments and theory. A recent study used this 

method for the evaluation of self-diffusion in a triple-defect A-B binary system and to 

demonstrate the importance of atomic jumps to next-nearest neighbour vacancies [47]. 

 

2.5 MOLECULAR DYNAMICS 

The following section talks about the used approach in the scope of this thesis. 

It is placed as part of the literature review, to allow a more structured layout of the 

remaining thesis and its included publications. Therefore, the developed methodology 

to obtain the results and relations of this study is presented in detail in this section, 

building the groundwork of the computational approach. Further elaboration will 

follow in the different chapters according to their aims, where needed.  

Diffusion dynamics and thermal transport phenomena have a major impact on 

the molecular structure of the melt as it solidifies, and hence play a major role in 

shaping the properties of the final material. Therefore, improved knowledge and 

control of these factors allow for better control of the properties of the final material, 

and hence paves the way for the design of highly specialised materials. This field has 

been an attractive research topic for a long time with molecular dynamics as one of the 

most important methods for a numerical investigation of thermotransport- and 
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thermodynamic properties at atomic scale. With the molecular dynamics method it is 

possible to compute the material properties of a classical many-body system, making 

it a powerful method to support experimental work. The process of a simulation is 

actually very close to the setup of real world experiments, since the aim of a simulation 

model is always to reflect real world as close as possible. The experiment usually starts 

with the preparation of a material sample that gets connected to a measuring 

application. Then its properties are being measured over a certain time interval. For 

the simulation, a model system of a certain size is chosen. To investigate its properties 

computationally, Newton’s equation of motion is applied until the system reaches 

equilibrium. Hence the properties will not change with time, then the measurement of 

the properties is carried out. The step of equilibration can be compared with the 

reduction of statistical noise of experimental results. Longer simulation times help to 

reduce error of fluctuations. Another crucial step to guarantee high quality simulations 

with reliable results is the correct preparation of all its inputs. Similar to experimental 

studies, it is important to prepare the sample or model system correctly, choose 

applicable potentials, ensembles, conditions, and the right theoretical treatment of the 

data. This allows for simulation to be a powerful tool that helps to explain and therefore 

to better understand a physical process providing a high level of information. 

Modern technologies and industry extensively utilise the principles of materials 

science for appropriate material selection, processing route and treatment. To obtain 

desired material properties that depend on the microstructure, it is crucial to understand 

several phenomena, especially the ones of heat and material transport, which arise 

during solidification of alloys. Molecular dynamics are an effective tool to obtain 

insights into the structure at atomic scale.  

 

2.5.1 Simulation Methodology 

Molecular dynamics is a branch of computational methods commonly used to 

simulate diffusion based processes. The chosen methodology for molecular dynamics 

simulation of the Ni-Zr system in the scope of this thesis is very useful for the 

investigation of transport- and thermodynamic properties of binary melts. The 

embedded-atom method potential used was developed by Pun et al [48] and is 

successfully applied to a binary study of the Ni-Al system [14].  
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With the idea of obtaining an extensive picture of material properties during 

solidification of the Ni-Zr model system, a wide composition range is chosen, namely: 

Ni, Ni87.5Zr12.5, Ni75Zr25, Ni62.5Zr37.5, Ni50Zr50, Ni37.5Zr62.5, Ni25Zr75, Ni12.5Zr87.5, and 

pure Zr. The thorough study of the two pure materials as well as seven compositions 

allows for evaluation of high accuracy composition dependencies of their properties. 

The studied temperature ranges from 2200 K down to 1200 K to ensure the capturing 

of significant diffusion dynamics in the melt during its solidification. By making use 

of the Verlet algorithm [49], the time evolution of the model system is calculated via 

numerical integration of Newton’s equation of motion with a time step ∆𝑡𝑡 = 1.5 fs. 

The simulations are performed using the large-scale atomic/ molecular massively 

parallel simulator (LAMMPS) code [50]. Within a zero-momentum reference frame, 

the total momentum of the used model system is kept at a zero value, hence the velocity 

reference frame relatively fixed to the centre of mass of the system. Size of used 

simulation cell ranges for different models between 4000-4394 atoms using periodic 

boundary conditions. Models are initialised with liquid states in the NPT ensemble at 

a temperature of 4000 K and zero pressure for a period of 6 ns. Instigated in LAMMPS 

code, a Nosé-Hoover thermostat and barostat are included. Additional equilibration 

runs of the length of 6 ns are performed after switching MD models to the NVE 

ensemble.  

After completion, renormalisation of velocities of atoms at next considered 

temperature of 3000 K followed by the same sequence of runs to equilibrate the model 

systems. After reaching 2200 K, the temperature step is decreased significantly down 

to 50 K to obtain thorough insight into the arising transport dynamics of the melts at 

different temperatures. The resulting cooling rate is approximately 4 K ns-1. At 

considered temperatures, the equilibrations go along with three consecutive production 

runs, each lasting 9 ns in the NVE ensembles. Achieving a high quality of results, the 

outcomes of these production runs are averaged. The in-depth simulation with a total 

number of time origins of 1.8 × 107 is used to calculate the following: i) 

autocorrelation function of the interdiffusion flux and ii) mean-squared displacements 

of atoms of different species. 

The here described simulation methodology talks about the fundamentals 

established and is followed by a further elaborated methodology that can be found at 

the start of the included publication and book chapter, Chapters 3 and 5 respectively. 
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Further understanding of theoretical background is closely related to the framework of 

the carried out studies, thus elaborated within their respective chapters of this work. 

 

2.5.2 Thermodynamic Ensembles 

The molecular dynamics method is used to study the time evolution of N-body 

of particles classical system in a volume, while its total energy remains constant. Due 

conservation of energy in a system, the microcanonical ensemble (NVE), is the most 

reliable. In it, the number of atoms N, volume of the system V and the total energy E, 

are fixed. Hence the quantities of pressure and temperature of the system fluctuate. 

The ensembles can easily be changed to find and calculate other quantities. With help 

of thermostats and barostats, the temperature and pressure can be set in different 

ensembles respectively, see simulation methodology in Chapter 3. 

For representation of a mechanical system in thermal equilibrium with a constant 

temperature, the canonical ensemble (NVT) is used. Here, the number of particles 𝑁𝑁, 

volume 𝑉𝑉 and temperature 𝑇𝑇 are fixed. While it is not possible for matter, the energy 

of the system can transfer across boundaries between system and its surroundings. 

Lastly, the isothermal-isobaric ensemble (NPT), is given by a constant number of 

particles 𝑁𝑁, pressure 𝑝𝑝 and temperature 𝑇𝑇. This statistical mechanical ensemble is 

essential when describing the Gibbs free energy of a system, due to its ability to 

represent the possible work of a system under the conditions of constant pressure and 

temperature. This approach models closely to real life experiments. Here, often those 

experiments are performed under constant pressure. Thus, if one aims to 

computationally calculate the composition effect of a solvent and properties of the 

system, the volume in the NVT ensemble needs to be attuned to ensure a remaining 

constant pressure. In this case a change of the ensemble makes more sense in a way, 

where the pressure is fixed and finally the volume is considered a dynamical variable.  

Within the simulation method used to obtain results on the binary Ni-Zr model 

system, the use of the different statistical mechanical ensembles NPT and NVE is 

necessary to obtain insights into transport and thermodynamic kinetics in the melt. The 

included investigations in Chapters 3 and 5 elaborate on the importance and necessity 

of the switches between ensembles. 

 



 

32 Chapter 2: Literature Review 

2.5.3 Boundary Conditions 

The model system in MD simulation is structured as a simulation cell, consisting 

of thousands of atoms. Due to limitations of the molecular dynamics technique, one 

can use periodic boundary conditions to counteract problems with boundary effects 

that arise owing the finite size of the simulation cell. Symmetry planes are used to 

account for the finite nature of the simulated control volume and to decrease 

computational expense. Hence, a central cell is used, periodic images of itself that 

surround the central cell in x-y-z directions copy the movement of particles of the 

original cell as can be seen in Figure 3. When a particle moves outside of the central 

cell, it re-enters again on its opposite side. This method preserves the number density 

of atoms as well as the momentum of the system. This procedure is repeated to 

simulate the evolution of the system without influence of external surfaces, providing 

correct measurements of bulk properties. Periodic boundary conditions are essential to 

keep computational cost reasonably low, allowing the simulation of a few hundred 

atoms to imitate the behaviour of a simulation of infinite size removing surface effects. 

Therefore the simulated behaviour of the internal structure will not be affected by wall 

effects.  

 

Figure 3 Periodic boundary conditions for the main simulation cube 
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2.5.4 Limitations of Molecular Dynamics 

Every simulation method comes with their own advantages and limitations. The 

molecular dynamics method is mainly affected by time, size and temperature 

limitations. In particular: 

a) The tendency of a system to slow down around phase transitions affects the 

simulation time. It should therefore be longer than the relaxation time of the 

quantities. This happens usually within 1 µs and is the most common 

limitation [51]. For numerical stability of the simulation a short time step is 

required. 

b) Increasing or diverging correlation lengths around phase transitions may 

alter simulation results when the size of the simulation cell becomes 

equivalent. Length scales should therefore be within the range of 1 nm to 1 

µm [52]. 

c) To apply the classical description of atomic dynamics, the simulation 

temperature should be above the critical temperature of the system. This way, 

quantum effects become important in any system at low temperatures, hence 

a wide temperature range can be considered [51]. 

 

2.5.5 Embedded-Atom Method 

To describe the energy between atoms, Daw and Baskes introduced a semi-

empirical approach in 1984, the so called embedded- atom method (EAM) [53]. In this 

method, which is widely used in MD, each atom embeds in a host lattice, generally 

describing atomic bonding in a metallic system. The approximation depends not only 

on the separation between pairs of atoms, but also how neighbouring atoms are located 

around each other, thus their atomic environment. It defines the energy between atoms 

as an interatomic potential as shown in Eq. 16. 

𝑒𝑒𝑁𝑁 = 1
2

 𝑚𝑚𝑁𝑁 𝑣𝑣𝑁𝑁2 + 𝐹𝐹𝜇𝜇𝑖𝑖(�̅�𝜌𝑁𝑁) + 1
2
∑ 𝑉𝑉𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗𝑗𝑗(≠𝑁𝑁) �𝑟𝑟𝑁𝑁𝑗𝑗�       (16) 

 

Where 

�̅�𝜌𝑁𝑁 = ∑ 𝜌𝜌𝜇𝜇𝑗𝑗𝑗𝑗(≠𝑁𝑁) �𝑟𝑟𝑁𝑁𝑗𝑗�        (17) 
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The total energy of an atom 𝑖𝑖 is dependent on the mass of the atom given by 𝑚𝑚𝑖𝑖, 

absolute value of the velocity vector 𝑣𝑣, 𝐹𝐹𝜇𝜇𝑖𝑖 the embedding energy of the atom as a 

function of the host electron density 𝜌𝜌�𝑖𝑖 induced at site 𝑖𝑖 by all other atoms in the 

system. Finally, 𝑉𝑉𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗, represents the pair interaction potential as a function of distance 

𝑟𝑟𝑖𝑖𝑗𝑗 between atoms 𝑖𝑖 and 𝑗𝑗. Its relation to the second moment approximation to the 

Finnis-Sinclair model [54] and is highly accurate for simulation of metallic systems, 

makes this method a widely used technique for MD simulations. 

 

2.5.6 Green-Kubo Formalism 

The heat of transport in equilibrium MD simulations can be expressed as an 

integral of the time correlation function between the matter flux and the heat flux. This 

expression is commonly known as the Green-Kubo formulae, and is an effective tool 

to obtain the thermal conductivity and phonon transport properties of a material [55-

59]. 

The Green-Kubo method gives the thermal conductivity 𝑘𝑘 in terms of the time integral 

of the heat current auto-correlation function (HCACF), 〈𝐽𝐽(𝑡𝑡)𝐽𝐽(0)〉 as: 

𝑘𝑘 = 1
3𝑉𝑉𝑘𝑘𝐵𝐵𝑘𝑘2

∫ 〈𝐽𝐽(𝑡𝑡)𝐽𝐽(0)〉𝑑𝑑𝑡𝑡∞
0 ,          (18) 

 
Where 𝑉𝑉 gives the simulation cells volume, 𝑘𝑘𝐵𝐵 the Boltzmann constant, 𝑇𝑇 the absolute 

temperature, 𝐽𝐽 the heat current vector and 𝑡𝑡 the time. The heat current vector is 

generally described as follows: 

𝐽𝐽 = 𝑑𝑑
𝑑𝑑𝜕𝜕

(∑ 𝑒𝑒𝑁𝑁𝑟𝑟𝑁𝑁𝑁𝑁 ) =  ∑ 𝑒𝑒𝑁𝑁𝑣𝑣𝑁𝑁𝑁𝑁 + ∑ 𝑟𝑟𝑁𝑁
𝑑𝑑𝑒𝑒𝑖𝑖
𝑑𝑑𝜕𝜕𝑁𝑁 ,        (19) 

 

Where summations cover the atoms in the system with 𝑒𝑒𝑖𝑖, 𝑟𝑟𝑖𝑖 and 𝑣𝑣𝑖𝑖 representing 

respectively total energy, radius vector and the velocity vector of the 𝑖𝑖-th atom. The 

first summand on the right side of the equation takes into consideration the convection, 

the second summand the conduction. While this method has no effect on the atomic 

dynamics, the temperature of the system is uniform and constant. Thus allowing for 

calculation of the temperature dependence of the thermal conductivity 𝑘𝑘.  
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2.5.7 Function 

Overall, the shown computational approach of molecular dynamics is capable to 

access thermotransport and thermodynamic properties of the material at atomistic 

level. The developed methodology using atomistic modelling and statistical 

mechanics, allows to establish a relationship between the microstructure and diffusion 

properties and hence, create principles for atomic-scale engineering. The outcome of 

the simulations can be used to gain control of the design of mechanical properties of 

materials, for instance metallic glass. Obtained results build the foundation for future 

research in this field and can help to reduce time and cost for the development and 

production of new advanced materials. 

 

2.6 SUMMARY AND IMPLICATIONS 

The previously covered topics of the concept of diffusion, the fundamentals of 

enthalpy, metallic glass, computational approaches in the field and the molecular 

dynamics simulation method, build the foundation of this research. These topics were 

described to familiarise the reader with principle concepts this research is based on. 

An in-depth exploration of each relevant topic is included in the following chapters, 

which divide the subject of the study further in form of binary melts with different 

types of atomic ordering. In the framework of molecular dynamics simulation in 

conjunction with a semi-empirical many-body interatomic potential, the developed 

approach uses molecular dynamics calculations, atomistic modelling, and statistical 

mechanics. The statistical part is based on the Green-Kubo formalism, a generalisation 

of the Langevin Equations and the Mori-Zwanzig formalism. In addition, new 

theoretical relations for the fluctuation-dissipation theorem for collective energy were 

established and further advanced. The importance of gaining a better understanding of 

diffusion, thermotransport and thermodynamic properties on Ni-Zr melts and other 

case studies, like the systems of Ni-Al and Cu-Ag, lies in their wide range of 

applications. While materials of the studied alloys are already being used in sports 

equipment [36], aerospace applications [39,60] or micro-forming applications [61], 

general technological interest is very high due to their versatility and excellent material 

properties [62].  
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For the design of metallic glass materials with desired properties, it is crucial to 

understand dynamics in the melt during solidification that directly affect the 

microstructure and therefore the properties of a material. Laboratories perform 

experiments to study microscopic behaviour to learn more about the solidification of 

alloys. After thorough analysis of literature, it was found that the existing experimental 

research lacks results in certain fields of diffusion, thermotransport and 

thermodynamics properties due to external factors that reduce the reliability of their 

quality or simply make experiments physically impossible to perform. Measuring 

accurate transport and thermodynamic properties of liquid alloys in experimental 

studies is heavily affected by chemical reactivity, high temperatures or crystallisation 

of the melt in contact with the container walls. For instance, especially in the case of 

Ni-Zr alloys in experiments, the high reactivity of the melt with the container interferes 

with the outcome of the study, decreasing the reliability of results. New ways to 

perform studies reducing occurring limitations are constantly being worked on and 

developed, i.e. the method of processing the melt without the use of a container using 

electrostatic levitation [63]. This methodology allows the study of atomic dynamics in 

the melts by quasielastic neutron scattering at the time of flight [7]. However by 

reducing the limitations, experiments often spike up in terms of their costs and time 

consumption.  

Aiming to push research further and support experimental studies, the approach 

using molecular dynamic simulation carried out in this thesis, is a powerful tool to 

obtain insights into solidification processes that arise in the melt at atomic level. It is 

important to mention that currently, approaches using phase-field modelling are based 

on the limited existing experimental data for transport and thermodynamic properties, 

but are crucial for prediction of material properties. This method allows for a reliable 

way of producing results that can be used to verify the scarce experimental data. 

Additionally, outcome of simulation projects like the included case studies, can be 

used to determine quantitative outcomes for experiments. They play a major role in 

the decision making process of experiments with the opportunity of reducing their cost 

and time. This will help with the correct choice of processing routes and also to 

improve quality of alloys in solid state. This allows for more extensive research in the 

design of new materials on the basis of a strong understanding of microscopic 
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phenomena at atomic scale, while using a method free of the existing experimental 

limitations.  

For this matter, focus lies on the evaluation of various diffusion properties by 

making use of the Onsager coefficient for mass transport within the framework of the 

Mori-Zwanzig formalism of statistical mechanics. diffusion properties include but are 

not limited to i) self-diffusion coefficients, 𝐷𝐷1,2, based on the mean-squared 

displacement of atoms of different species and ii) the kinetic part of interdiffusion, 

𝐿𝐿�𝐶𝐶𝐶𝐶, based on the interdiffusion flux, 𝐽𝐽𝐶𝐶. While establishing new relations expressing 

microscopic cross-correlation effects in the kinetics of collective diffusion, the quality 

and precision of results obtained is crucial. In terms of the diffusion coefficient for 

example, if the value only varies by a few times, or simply not considering its 

temperature and composition dependence, will lead to a significant change in quality 

of prediction for the microstructure [64]. Advanced focus then is placed on 

establishing theoretical relations on thermotransport properties. Those basically 

describe the tendency of segregation of a system of a minimum of two components 

under a temperature gradient, also known as the Soret effect, ultimately changing the 

viscosity dependent on the temperature gradient. In case of solidification, 

thermotransport affects the structure and composition of the solidification front of the 

alloy.  
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2.7 OBJECTIVES 

The aim of this research is to elucidate material properties of diffusion, 

thermotransport and thermodynamics in binary melts of Ni-Zr. Furthermore, the melts 

of Ni-Al and Cu-Ag are analysed and their diffusion dynamics evaluated. Results 

group the different melt systems into melts with different types of atomic ordering. By 

making use of computational methodology, the obtained results and established 

relations help, to close the existing knowledge gap related to mass- and thermal 

transport phenomena. To fill this gap, detailed insights into the following must be 

obtained, and is addressed separately in Chapter 6:  

- Self-diffusion coefficients 

- Interdiffusion coefficients 

- Decoupling behaviours  

- Correction factor 

- Time-correlation functions 

- Enthalpy 

- Collective energy generation-dissipation effect 

The diffusion coefficients in liquid alloys are a major factor for the control of 

the crystalline microstructure during solidification and are crucial input parameters in 

phase field modelling [65,66]. Developing theoretical relation between the different 

mass transport coefficients enables quantitative prediction of material properties. This 

allows to express unknown coefficients in terms of other, during experiments reliably 

measurable coefficients [67]. In studied many-body systems, transport and dynamical 

properties are expressed via time-correlation functions of physical variables. A one-

sided Fourier transformation can be used to express the frequency dependent thermal 

conductivity and diffusion coefficients in terms of the time-correlation functions of 

heat and mass currents. The control of transport and dynamical properties of many-

body systems is a crucial step towards closing the existing gap via modelling and 

analysis of the time correlation functions. This is addressed with the developed 

approach using concepts of the Brownian motion [59,68], the discussed collective 

energy fluctuation- dissipation theorem [59,68], Langevin equation [59,68], as well as 

the Mori-Zwanzig formalism [69-72].  
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Additionally, this computational approach aims to eliminate limitations that 

occur in experimental approaches, as previously discussed in Section 2.6, and can 

influence the decision making process for future experiments, processing and 

manufacturing routes. The identification of a composition range with desired diffusion 

dynamics via the developed simulation technique, will drastically reduce time and 

costs of experiments, by determining the best alloy to fulfil given requirements for a 

certain application. The molecular dynamics methodology developed, is an excellent 

tool to support experimental studies in the field. Opportunities are countless, hence the 

additional study of a number of different model systems with the idea, to also 

investigate cross-system behaviours. The considered case studies, namely Ni-Zr [10], 

Ni-Al [14] and Cu-Ag [16], where chosen due to a variety of reasons. They are of high 

technological importance in the world of engineering, which relates to their peculiar 

atomistic behaviours in terms of crystallisation, diffusion and heat transfer properties. 

Indicating different types of behaviours, the different melts can be grouped into binary 

liquid alloys with i) mixing tendency and ii) demixing tendency. Novel insights are 

obtained and discussed for the different type of melts in Chapter 5. 

 

This work elaborates further on following topics: 

- Establishing theoretical relations 

- Single-particle and collective diffusion dynamics 

- Thermotransport properties 

- Thermodynamic properties  

- Stability of different types of melt 

 

These topics are studied in-depth in the following chapters, novel theoretical 

treatment is derived and established. Dependencies between material properties, 

dynamics in the melt and the microstructure are shown. Concluding a state-of-the-art 

approach and creating an innovative database on material properties. Predictions based 

on obtained results are given in this work. 
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Chapter 3: Diffusion in Ni-Zr Melts: 
Insights from Statistical 
Mechanics and Atomistic 
Modeling 

3.1 INTRODUCTION 

This chapter introduces the simulation method used to obtain insights into 

diffusion properties of Ni-Zr melts over a wide composition and temperature range. 

Delivering thermotransport properties, describing single-particle and collective 

diffusion, a self-sufficient database is generated. A statistical mechanical approach is 

used to study cross-correlation between the interdiffusion flux, 𝐽𝐽𝐶𝐶(0), and the force, 

𝑅𝑅12(𝑡𝑡), that results of atoms of different species and their difference in their average 

random accelerations in the short time limit 𝑡𝑡 → 0. The lack of available experimental 

results points out the importance of the theoretical approach developed. This is a 

consequence of various difficulties that occur when performing experiments as 

previously shown in Chapter 2. The high accuracy of calculations achieved via this 

study helps predict outcomes of expensive or even impossible to perform experiments. 

The temperature range 2200 K to 1200 K is investigated and results for the two 

self-diffusion coefficients of Nickel and Zirconium, 𝐷𝐷𝑁𝑁𝑁𝑁 and 𝐷𝐷𝑍𝑍𝑟𝑟 respectively, 

obtained. The simulation method in the framework of the molecular dynamics method 

in conjunction with a semi-empirical many-body potential gives results in good 

agreement with results available through experiments. Additionally, by making use of 

the Green-Kubo formalism, the kinetic part of interdiffusion, 𝐿𝐿�𝐶𝐶𝐶𝐶, is calculated using 

the Onsager Coefficient for mass transport, 𝐿𝐿𝐶𝐶𝐶𝐶, via the time integral of the 

autocorrelation function of the interdiffusion flux, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡), describing collective 

diffusion. More detailed derivation of the methodology including visualisation for 

several composition and temperatures is shown in the publications supporting material 

section after the reference list. Going forward with the diffusion properties and the 

Mori-Zwanzig formalism, an expression for cross-correlation effects in the kinetics of 

collective diffusion is developed. Furthermore, initial behaviour of the binary Ni-Zr 

melt with tendency for chemical ordering is examined and new theoretical relations 
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introduced, that help to describe the relative change of stability of atomic ordering of 

the system upon undercooling. This is particularly important for a better understanding 

of the response of the system and its initial reaction in short time limit 𝑡𝑡 → 0 when 

pushed out of equilibrium. 

This chapter provides new understandings on diffusion properties of binary Ni-

Zr melts, investigating single-particle and collective diffusion dynamics and their 

contribution into the glass-forming ability of an alloy with atomic ordering. 

Furthermore, the correlation of 𝐽𝐽𝐶𝐶(0) and 𝑅𝑅12(𝑡𝑡) is found to develop over time. Hence, 

the initial sign of 𝑃𝑃12(𝑡𝑡), is depending on the novel dimensionless factor, 𝜎𝜎12. The new 

findings, as well as theoretical understanding of diffusion dynamics in the melt, result 

in identification of the composition range 0.25 ≲ 𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.5 exhibiting dynamical 

homogeneous slowdown of single-particle and collective diffusion dynamics in the 

melt. Suggesting that this dynamical behaviour indicates better stability of the melt 

against its crystallisation upon undercooling, ultimately emerging enhanced glass-

forming ability within this composition range. 
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Di ff u si o n i n  Ni – Zr  M elt s: I n si g ht s fr o m St ati sti c al
M e c h a ni c s a n d  At o mi sti c  M o d eli n g

A n dr e as Kr o mi k, El e n a  V. L e v c h e n k o,  C arl o  M ass o bri o, a n d  Al ex a n d er  V. Evt e e v *

A n a c c ur at e d at a b a s e of di ff u si o n pr o p erti e s of  Ni – Zr  m elt s i s g e n er at e d

wit hi n t h e fr a m e w or k of t h e  m ol e c ul ar- d y n a mi c s  m et h o d i n c o nj u n cti o n  wit h

a s e mi- e m piri c al  m a n y- b o d y i nt er at o mi c p ot e nti al. T h e r eli a bilit y of t h e  m o d el

d e s cri pti o n of  Ni – Zr  m elt s i s c o n fir m e d vi a c o m p ari s o n of t h e si m ul ati o n

r e s ult s  wit h t h e e xi sti n g e x p eri m e nt al d at a o n di ff u si o n pr o p erti e s of  Ni – Zr

m elt s.  A st ati sti c al  m e c h a ni c al f or m ali s m i s e m pl o y e d t o u n d er st a n d t h e

b e h a vi or of t h e cr o s s- c orr el ati o n b et w e e n t h e i nt er di ff u si o n fl u x a n d t h e f or c e

c a u s e d b y t h e di ff er e n c e i n t h e a v er a g e r a n d o m a c c el er ati o n s of at o m s of

di ff er e nt s p e ci e s i n t h e s h ort ti m e li mit t → 0. T hi s t h e or eti c al d e s cri pti o n i s

e x pl oit e d t o a n al y z e t h e si m ul ati o n d at a o n t h e di ff u si o n pr o p erti e s of  Ni – Zr

m elt s.  O n t hi s b a si s, it i s f o u n d t h at i n t h e c o m p o siti o n r a n g e 0 .2 5 <
∼ c Ni

<
∼ 0 .5

b ot h si n gl e- p arti cl e a n d c oll e cti v e di ff u si o n d y n a mi c s sl o w d o w n

h o m o g e n e o u sl y u p o n u n d er c o oli n g of  Ni – Zr  m elt s. F urt h er m or e, it i s i nf err e d

t h at s u c h h o m o g e n e o u s d y n a mi c al sl o w d o w n i s r el at e d t o t h e e n h a n c e d

st a bilit y of u n d er c o ol e d  m elt a g ai n st cr y st alli z ati o n.  A s a c o n s e q u e n c e,  Ni – Zr

all o y s  wit hi n t hi s c o m p o siti o n r a n g e ar e i d e nti fi e d a s vi a bl e gl a s s f or m er s.

1. I ntr o d u cti o n

Bi n ar y  Ni – Zr all o y s h a v e attr a ct e d gr e at i nt er e st a s r ef er e n c e
s y st e m s f or u n d er st a n di n g t h e pr o p erti e s of a n i m p ort a nt cl a s s
of  m ulti c o m p o n e nt  Zr- b a s e d b ul k  m et alli c gl a s s e s ( B M G s). [ 1 – 1 1]

T h e  B M G s ar e t y pi c all y pr o d u c e d b y  m elt pr o c e s si n g a n d t h eir
e x c ell e nt gl a s s-f or mi n g a bilit y i s str o n gl y d et er mi n e d b y p e c uli ar-
iti e s of at o mi c d y n a mi c s i n t h e li q ui d st at e.[ 1 2, 1 3] I n t hi s c o nt e xt, it
w a s pr e vi o u sl y n ot e d t h at t h e  Ni s elf- di ff u si o n c o e ffi ci e nt s  m e a-
s ur e d b y q u a si- el a sti c n e utr o n s c att eri n g i n bi n ar y gl a s s-f or mi n g
Ni 3 6 Zr 6 4 , Ni5 0 Zr 5 0 , a n d Ni6 4 Zr 3 6 li q ui d all o y s ar e  w ell c o m p ar a-
bl e t o t h o s e  m e a s ur e d i n t h e  m ulti c o m p o n e nt  Zr- b a s e d  m et al-
li c gl a s s-f or mi n g  m elt s.[ 4, 5, 7] Alt h o u g h gl a s s-f or mi n g a biliti e s a n d
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li q ui d u s t e m p er at ur e s f or t h e bi n ar y a n d
m ulti c o m p o n e nt all o y s e x hi bit r el ati v el y
l ar g e di ff er e n c e s, t h e a b s ol ut e v al u e s of t h e
Ni s elf- di ff u si o n c o e ffi ci e nt s  w er e f o u n d t o
b e si mil ar at t h e s a m e t e m p er at ur e.

F urt h er m or e, t h e or eti c al a n al y si s [ 1 1] of si-
m ult a n e o u s r a di otr a c er di ff u si o n  m e a s ur e-
m e nt s of 5 7 C o ( w hi c h i s c o n v e ni e ntl y u s e d
t o a s s e s s  Ni di ff u si o n) a n d 9 5 Zr i n t h e bi n ar y
Ni 3 6 Zr 6 4 m elt [ 1 0] a s  w ell a s i n a  Zr- b a s e d
m ulti c o m p o n e nt  Zr 4 6. 7 5 Ti 8. 2 5 C u 7. 5 Ni 1 0 B e 2 7. 5

gl a s s-f or mi n g  m elt [ 8] r e v e al e d a d diti o n al i n-
di c ati o n of si mil ar di ff u si o n b e h a vi or i n
t h e all o y s b y i n cl u di n g i nt o c o n si d er ati o n
t h e  Zr s elf- di ff u si o n c o e ffi ci e nt s. I n p ar-
ti c ul ar, i n r ef s. [ 1 0, 1 1], it  w a s r e c o g ni z e d
t h at a si g ni fi c a nt c o m p o n e nt d e c o u pli n g
( wit h t h e r ati o of  Ni a n d  Zr s elf- di ff u si o n
c o e ffi ci e nt s a s l ar g e a s f o ur, D Ni / D Zr ≈ 4)
o b s er v e d i n  Zr 4 6. 7 5 Ti 8. 2 5 C u 7. 5 Ni 1 0 B e 2 7. 5 m elt
n e ar it s li q ui d u s t e m p er at ur e of 1 0 5 0  K i s i n

a c c or d a n c e  wit h t h e r ati o D Ni / D Zr ≈ 1 o b s er v e d i n  Ni 3 6 Zr 6 4 m elt
a b o v e it s li q ui d u s t e m p er at ur e of 1 2 8 3  K. I n d e e d, t h e r ati o
D Ni / D Zr d e cr e a s e s t o a f a ct or of l e s s t h a n t w o  w h e n t h e s elf-
di ff u si o n c o e ffi ci e nt s of  Ni a n d  Zr i n  Zr 4 6. 7 5 Ti 8. 2 5 C u 7. 5 Ni 1 0 B e 2 7. 5

gl a s s-f or mi n g  m elt ar e e xtr a p ol at e d a b o v e 1 2 0 0  K a c c or di n g t o
t h e  Arr h e ni u s l a w.  M or e o v er, a s m all b ut n ot a bl e c o m p o siti o n d e-
p e n d e n c e of t h e r ati o D Ni / D Zr w a s d et er mi n e d, t hi s r ati o i n cr e a s-
i n g  wit h i n cr e a si n g  Ni c o nt e nt fr o m  Ni3 6 Zr 6 4 t o w ar d  Ni6 4 Zr 3 6

m elt c o m p o siti o n. [ 1 0, 1 1]

T h e s e  fi n di n g s i n di c at e t h at t h e str o n g c h e mi c al s h ort-r a n g e
or d er i n t h e bi n ar y  Ni – Zr a n d  m ulti c o m p o n e nt  Zr- b a s e d  m elt s
c a n c a u s e a d y n a mi c al d e c o u pli n g of t h e s elf- di ff u si o n c o e ffi-
ci e nt s of t h e c o m p o n e nt s,  w hi c h i s e x p e ct e d t o b e c o m e str o n g er
wit h d e cr e a si n g t e m p er at ur e. [ 8, 1 0, 1 1] It  w a s s u g g e st e d t h at s u c h a
d y n a mi c al b e h a vi or  mi g ht b e d u e t o a s at ur ati o n e ff e ct a m o n g
Ni – Zr n e ar e st- n ei g h b or p air s a n d a n i n cr e a s e d a m o u nt of l e s s
str o n gl y i nt er a cti n g  Ni – Ni p air s t o w ar d  Ni-ri c h c o m p o siti o n s. [ 1 1]

A s a r e s ult, t h e bi n ar y  Ni – Zr  m elt s ar e c urr e ntl y r e c o g ni z e d
a s r e ali sti c  m o d el s y st e m s f or u n d er st a n di n g  mi cr o s c o pi c d y-
n a mi c s of t h e  m ulti c o m p o n e nt  Zr- b a s e d b ul k  m et alli c gl a s s
f or m er s.[ 1 0, 1 1]

Gi v e n t h e a b o v e pr e mi s e s,  w e st u d y i n t hi s c o ntri b uti o n, t h e
di ff u si o n pr o p erti e s of  Ni – Zr  m elt s b y u si n g  m ol e c ul ar d y n a m-
i c s ( M D) i m pl e m e nt e d  wit h a s e mi- e m piri c al  m a n y- b o d y i nt er-
at o mi c p ot e nti al d e v el o p e d i n r ef. [ 1 4].  T hi s i nt er at o mi c p ot e n-
ti al i s b a s e d o n a c c ur at e p ot e nti al f u n cti o n s f or p ur e  Zr a n d
p ur e  Ni, [ 1 5, 1 6] pr e vi o u sl y d e v el o p e d  wit hi n t h e fr a m e w or k of t h e
e m b e d d e d at o m  m et h o d ( E A M) f or m ali s m. [ 1 7] I n t hi s p ot e nti al,
t w o a d diti o n al cr o s s-i nt er a cti o n f u n cti o n s ar e c o n str u ct e d  wit hi n
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t h e fr a m e w or k of t h e Fi n ni s – Si n cl air f or m ali s m[ 1 8] b y s e e ki n g
t h e b e st a gr e e m e nt  wit h a b i niti o a n d e x p eri m e nt al d at a f or
cr y st al a n d li q ui d p h a s e s of t w o st oi c hi o m etri c  Ni Zr 2 a n d  Ni Zr
all o y s. [ 1 4] I n p arti c ul ar, it i s i m p ort a nt t o n ot e t h at t h e i nt er-
at o mi c p ot e nti al i s a bl e t o c orr e ctl y r e pr o d u c e e x p eri m e nt al d at a
o n t h e e nt h al pi e s of  mi xi n g (f or m ati o n) of t h e  Ni Zr 2 a n d  Ni Zr
li q ui d all o y s a s  w ell a s o n t h e st a bilit y a n d  m elti n g t e m p er a-
t ur e s of t h e  C 1 6- Ni Zr2 a n d  B 3 3- Ni Zr cr y st al p h a s e s. [ 1 4] Ta b u-
l at e d f or m s of t h e p ot e nti al f u n cti o n s e nt eri n g t h e i nt er at o mi c
p ot e nti al e m pl o y e d i n o ur  w or k ar e a v ail a bl e f or d o w nl o a d fr o m
htt p: / / w w w. ct c m s. ni st. g o v / p ot e nti al s /. [ 1 4] O ur c h oi c e of a d o pti n g
i nt er at o mi c p ot e nti al s  wit hi n a cl a s si c al  M D fr a m e w or k i s  m o stl y
d u e t o t h e r e q uir e m e nt of e xt e n d e d t e m p or al tr aj e ct ori e s u n d erl y-
i n g t h e pr o p er e v al u ati o n of di ff u si o n pr o p erti e s.  W e r e mi n d t h at
fir st- pri n ci pl e s  M D h a s al s o b e e n e m pl o y e d t o  m o d el  m et alli c li q-
ui d all o y s. [ 1 9] T h e di ff u si o n pr o p erti e s of t h e  M D  m o d el s of  Ni – Zr
m elt s,  w hi c h ar e c o n si d er e d i n t h e pr e s e nt  w or k, i n cl u d e t h e s elf-
di ff u si o n c o e ffi ci e nt s of  Ni a n d  Zr at o m s, D Ni a n d D Zr , a s  w ell
a s t h e  O n s a g er c o e ffi ci e nt f or  m a s s tr a n s p ort, L̃ c c ,  w hi c h c h ar-
a ct eri z e s t h e ki n eti c s of c oll e cti v e di ff u si o n u n d er a c o m p o siti o n
gr a di e nt.  W e pr e s e nt a n e xt e n si v e a n d s elf- c o n si st e nt d at a b a s e
of t h e s e di ff u si o n pr o p erti e s g e n er at e d o v er a  wi d e t e m p er at ur e
a n d c o m p o siti o n r a n g e s f or t h e  M D  m o d el s of  Ni – Zr  m elt s.  T hi s
all o w s a c hi e vi n g a c o m pr e h e n si v e u n d er st a n di n g of t h e at o mi c
d y n a mi c s i n s u c h s y st e m s.

T hi s arti cl e i s or g a ni z e d a s f oll o w s. I n S e cti o n 2,  w e d e s cri b e
o ur si m ul ati o n  m et h o d ol o g y. I n S e cti o n 3,  w e di s c u s s t h e or et-
i c al r el ati o n s b et w e e n di ff u si o n pr o p erti e s of a bi n ar y  m elt.  W e
pr e s e nt e q u ati o n s e x pr e s si n g t h e di ff u si o n pr o p erti e s i n t er m s of
t h e ti m e- c orr el ati o n f u n cti o n s of a p pr o pri at e p h y si c al v ari a bl e s
wit hi n t h e fr a m e w or k of t h e  Gr e e n – K u b o a n d  M ori – Z w a n zi g
f or m ali s m s.  W e d eri v e t h e e x pli cit e x pr e s si o n f or t h e cr o s s-
c orr el ati o n f u n cti o n b et w e e n t h e i nt er di ff u si o n fl u x a n d t h e f or c e
c a u s e d b y t h e di ff er e n c e i n t h e a v er a g e r a n d o m a c c el er ati o n s of
at o m s of di ff er e nt s p e ci e s i n t h e s h ort ti m e li mit. I n S e cti o n 4,  w e
r e p ort o ur  M D r e s ult s f or t h e di ff u si o n pr o p erti e s of  Ni – Zr  m elt s.
A n al y zi n g t h e s e d at a o n t h e b a si s of t h e or eti c al r el ati o n s of S e c-
ti o n 3,  w e ar e a bl e t o e st a bli s h a li n k b et w e e n t e m p er at ur e a n d
c o m p o siti o n d e p e n d e n ci e s of t h e di ff u si o n pr o p erti e s of  Ni – Zr
m elt s a n d t h eir gl a s s-f or mi n g a bilit y. I n S e cti o n 5,  w e f or m ul at e
c o n cl u si o n s.

2. Si m ul ati o n  M et h o d ol o g y

T h e  m et h o d ol o g y of  M D si m ul ati o n s,  w hi c h  w e a d v a n c e i n t hi s
w or k f or  Ni – Zr  m elt s, i s i n g e n er al v er y pr o mi si n g f or s y st e m-
ati c st u di e s of t h er m o d y n a mi c a n d tr a n s p ort pr o p erti e s of bi n ar y
m elt s. I n p arti c ul ar, it i s al s o pr o v e d t o b e s u c c e s sf ul f or t h e  M D
m o d el s of  Ni – Al  m elt s [ 2 0] wit h t h e E A M p ot e nti al d e v el o p e d i n
r ef. [ 2 1]. S p e ci fi c all y,  w e c o n si d er ni n e c o m p o siti o n s a cr o s s t h e
bi n ar y  Ni – Zr s y st e m: p ur e  Ni,  Ni 8 7. 5 Zr 1 2. 5 , Ni7 5 Zr 2 5 , Ni6 2. 5 Zr 3 7. 5 ,
Ni 5 0 Zr 5 0 , Ni3 7. 5 Zr 6 2. 5 , Ni2 5 Zr 7 5 , Ni1 2. 5 Zr 8 7. 5 , a n d p ur e Zr. T h e dif-
f u si o n pr o p erti e s of t h e  m o d el s of  Ni – Zr  m elt s ar e st u di e d o v er
a  wi d e t e m p er at ur e r a n g e 2 2 0 0 – 1 2 0 0  K.

T h e  M D si m ul ati o n s  w er e p erf or m e d  wit h t h e L A M M P S
c o d e [ 2 2] u si n g t h e  V erl et al g orit h m [ 2 3] f or  n u m eri c al i nt e gr ati o n
of t h e e q u ati o n s of  m oti o n  wit h a ti m e st e p t = 1. 5 f s.  T h e t ot al
m o m e nt u m of t h e  m o d el s y st e m s  w a s c o n s er v e d at a z er o v al u e,

e n s uri n g a v el o cit y r ef er e n c e fr a m e fi x e d r el ati v e t o t h e c e nt er
of  m a s s of t h e s y st e m (t h e z er o- m o m e nt u m r ef er e n c e fr a m e).
T h e i niti al li q ui d st at e s of t h e  m o d el s  w er e e q uili br at e d i n c u-
bi c si m ul ati o n c ell s of a b o ut 4 0 0 0 at o m s (f or di ff er e nt  m o d el s
t h e n u m b er of at o m s v ari e s sli g htl y  wit hi n t h e r a n g e 4 0 0 0 – 4 3 9 4)
wit h p eri o di c b o u n d ar y c o n diti o n s i n all t hr e e dir e cti o n s u si n g
N P T e n s e m bl e d y n a mi c s at t h e t e m p er at ur e 4 0 0 0  K a n d z er o
pr e s s ur e, P = 0, f or 6 n s.  W e a d o pt e d a  N o s é – H o o v er t h er m o st at
a n d a  N o s é – H o o v er b ar o st at a s i m pl e m e nt e d i n t h e L A M M P S
c o d e. [ 2 2] T h e n, t h e st u di e d  M D  m o d el s  w er e s wit c h e d t o t h e N V E
e n s e m bl e a n d a d diti o n al e q uili br ati o n r u n s of l e n gt h 6 n s  w er e
p erf or m e d.  Aft er t hi s, t h e v el o citi e s of t h e at o m s  w er e r e n or m al-
i z e d t o t h e n e xt c o n si d er e d t e m p er at ur e 3 0 0 0  K a n d t h e s a m e s e-
q u e n c e of r u n s ( a 6 n s N P T r u n f oll o w e d b y a 6 n s N V E r u n)  w er e
e m pl o y e d t o bri n g t h e s y st e m s t o e q uili bri u m. St arti n g fr o m
2 2 0 0  K, t hi s pr o c e d ur e  w a s i m pl e m e nt e d at e a c h n e w t e m p er-
at ur e b y c o oli n g d o w n t h e s y st e m s  wit h a t e m p er at ur e st e p of
5 0  K.  A c c or di n gl y, t h e a v er a g e c o oli n g r at e b el o w 2 2 0 0  K c a n b e
e sti m at e d t o b e a b o ut 4  K n s − 1 .

T h e e q uili br ati o n s at t h e c o n si d er e d t e m p er at ur e s  w er e f ol-
l o w e d b y t hr e e s u c c e s si v e pr o d u cti o n r u n s l a sti n g 9 n s e a c h i n t h e
N V E e n s e m bl e s.  T h e r e p ort e d r e s ult s  w er e a v er a g e d o v er t h e s e
t hr e e pr o d u cti o n r u n s.  T h e t ot al n u m b er of ti m e ori gi n s ( a b o ut
1. 8 × 1 0 7 )  w er e u s e d f or c al c ul ati o n s of: (i) t h e a ut o c orr el ati o n
f u n cti o n of t h e i nt er di ff u si o n fl u x J c (t), C c c (t) = J c (t) J c ( 0) ,

a n d (ii) t h e  m e a n- s q u ar e d di s pl a c e m e nt s, r 2
1 (t) a n d r 2

2 (t) ,
of  Ni ( s p e ci e s 1) a n d  Zr ( s p e ci e s 2) at o m s ( t i s t h e ti m e a n d
· · · m e a n s t h e st ati sti c al ti m e a v er a g e at t h er m al e q uili bri u m).

T hr o u g h o ut t h e arti cl e,  w e a s s u m e t h at  Ni i s s p e ci e s 1  w hil e  Zr
i s s p e ci e s 2.

3. T h e or eti c al  B a c k gr o u n d

T h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d  Zr at o m s  w er e c al c ul at e d
a c c or di n g t o t h e  w ell- k n o w n Ei n st ei n r el ati o n, [ 2 4] a s

D α = li m
t→ ∞

r 2
α (t)

6 t
( 1)

w h er e t h e  m e a n- s q u ar e d di s pl a c e m e nt s of  Ni a n d  Zr at o m s ar e
gi v e n b y

r 2
α (t) =

1

N α

N α

i= 1

r 2
α i (t) (2 )

wit h r α i (t) = r α i (t) − r α i ( 0) r e pr e s e nti n g t h e ti m e-
di s pl a c e m e nt of a si n gl e at o m of s p e ci e s α a n d N α d e n oti n g
t h e n u m b er of at o m s of s p e ci e s α (α = 1 , 2) i n t h e c o n si d er e d
m o d el s y st e m.

I n or d er t o a n al y z e t h e c oll e cti v e di ff u si o n pr o c e s s i n t h e  m o d-
el s of  Ni – Zr  m elt s,  w e c o n si d er t h e i nt er di ff u si o n fl u x J c w hi c h
c a n b e c al c ul at e d i n a bi n ar y  m elt a s

J c (t) =
N

V
c 1 c 2 v 1 (t) − v 2 (t) = c 2 J 1 (t) − c 1 J 2 (t) (3 )

w h er e N = N 1 + N 2 i s t h e t ot al n u m b er of at o m s i n t h e s y s-
t e m v ol u m e V , c α = N α / N (c 1 + c 2 = 1) i s t h e at o mi c ( m ol e)
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fr a cti o n of s p e ci e s α , v α (t) i s t h e  m e a n v el o cit y of s p e ci e s α r el-
ati v e t o t h e c e nt er of  m a s s of t h e s y st e m, a n d J α (t) = N

V
c α v α (t)

i s t h e  fl u x of s p e ci e s α i n a v el o cit y r ef er e n c e fr a m e fi x e d r el a-
ti v e t o t h e c e nt er of  m a s s of t h e s y st e m. Si n c e t h e v el o citi e s of
b ot h s p e ci e s ar e r ef err e d t o t h e c e nt er of  m a s s of t h e s y st e m, t h e
fl u x e s J 1 (t) a n d J 2 (t) ar e n ot i n d e p e n d e nt a n d a li n e ar r el ati o n
e xi st s b et w e e n t h e fl u x e s  w hi c h i n t h e z er o- m o m e nt u m r ef er e n c e
fr a m e i s m 1 J 1 (t) + m 2 J 2 (t) = 0 , w h er e m α i s t h e  m a s s of at o m s
of s p e ci e s α .  T h u s i n a bi n ar y  m elt t h er e e xi st s o nl y o n e i n d e p e n-
d e nt  m att er fl u x

J c (t) =
m

m 2

J 1 (t) = −
m

m 1

J 2 (t) =
m

m 2 V

N 1

i= 1

v 1 i (t)

= −
m

m 1 V

N 2

i= 1

v 2 i (t) (4 )

w h er e m = c 1 m 1 + c 2 m 2 i s t h e t ot al  m a s s p er at o m of t h e s y s-
t e m,  w hil e v α i (t) d e n ot e s t h e v el o cit y of a si n gl e at o m of s p e ci e s
α .  T h e i n v ari a n c e of t h e i nt er di ff u si o n fl u x  wit h r e s p e ct t o t h e
c h oi c e of r ef er e n c e fr a m e ari s e s fr o m t h e f a ct t h at it d e s cri b e s
t h e fl u x e s of c o m p o n e nt s J 1 (t) a n d J 2 (t) r el ati v e t o e a c h ot h er.
F urt h er m or e, t h e fl u ct u ati o n of a n at o mi c v el o cit y, v α i (t), i n t h er-
m al e q uili bri u m i s a st ati o n ar y  G a u s si a n pr o c e s s  wit h t h e  m e a n
v el o cit y e q u al t o z er o, v α i ≡ v α i (t) = 0, a n d t h e t h er m al v e-
l o cit y gi v e n b y t h e  M a x w ell- B olt z m a n n di stri b uti o n a s v 2

α i =
3 k B T / m α ( w h er e T i s t h e t e m p er at ur e a n d k B i s t h e  B olt z m a n n
c o n st a nt).  T h e n, it f oll o w s t h at t h e fl u ct u ati o n of t h e i nt er di ff u-
si o n fl u x gi v e n b y E q u ati o n s ( 3) a n d ( 4) i n t h e f or m of t h e li n e ar
c o m bi n ati o n of t h e at o mi c v el o citi e s i s al s o a st ati o n ar y  G a u s si a n
pr o c e s s  wit h J c ≡ J c (t) = 0 a n d t h e e ff e cti v e t h er m al v el o cit y
gi v e n b y [ 2 5, 2 6]

V 2 J 2
c = 3 N c 1 c 2

k B T

m c

( 5)

w h er e m c = m 1 m 2 / m i s t h e e ff e cti v e  m a s s ( p er at o m) c arri e d b y
t h e i nt er di ff u si o n fl u x a s it f oll o w s fr o m E q u ati o n ( 4). It i s al s o
i m p ort a nt t o n ot e t h at t h e fl u ct u ati o n s of t h e i nt er di ff u si o n fl u x
ar e c h ar a ct eri z e d b y 3 N c 1 c 2 d e gr e e s of fr e e d o m a s it c a n b e s e e n
fr o m E q u ati o n ( 3).

U si n g t h e  O n s a g er f or m ali s m of t h e t h er m o d y n a mi c s of ir-
r e v er si bl e pr o c e s s e s, [ 2 7, 2 8] it c a n b e g e n er all y s h o w n t h at f or a n
i s otr o pi c bi n ar y  m elt t h e p h e n o m e n ol o gi c al c o e ffi ci e nt f or  m a s s
tr a n s p ort, L c c ( or it s r e n or m ali z e d c o u nt er p art L̃ c c ),

[ 2 9] w hi c h
li n k s t h e i nt er di ff u si o n fl u x t o t h e c o nj u g at e t h er m o d y n a mi c
f or c e, i s r el at e d t o t h e r ati o of t h e i nt er di ff u si o n c o e ffi ci e nt, D c ,
a n d t h e t h er m o d y n a mi c f a ct or, , a s

L̃ c c =
V k B T

N c 1 c 2

L c c =
D c

( 6)

B ot h D c a n d ar e i n pri n ci pl e a c c e s si bl e i n e x p eri m e nt.  W e
n ot e t h at t h e t h er m o d y n a mi c f a ct or, , i s r el at e d t o t h e s e c o n d
d eri v ati v e of t h e  m ol ar  Gi b b s fr e e e n er g y G / N wit h r e s p e ct t o
t h e c o m p o siti o n at c o n st a nt t e m p er at ur e T a n d pr e s s ur e P , a s

=
c 1 c 2

k B T

∂ 2 G / N

∂ c 2
α T , P

=
c α

k B T

∂ μ α

∂ c α T , P

( 7)

w h er e μ α d e n ot e s t h e c h e mi c al p ot e nti al of s p e ci e s α .  T h er ef or e,
i n c or p or ati n g t h e dri vi n g f or c e f or c h e mi c al di ff u si o n d u e t o t h e
di ff er e n c e i n t h e c h e mi c al p ot e nti al, t h e i nt er di ff u si o n c o e ffi ci e nt
c h ar a ct eri z e s c oll e cti v e  m a s s tr a n s p ort i n a bi n ar y s y st e m u n-
d er a c o m p o siti o n gr a di e nt. I n  M D si m ul ati o n s, t h e  O n s a g er c o-
e ffi ci e nt f or  m a s s tr a n s p ort, L c c , c a n b e c o n v e ni e ntl y e v al u at e d
wit hi n t h e fr a m e w or k of t h e  Gr e e n – K u b o f or m ali s m vi a t h e ti m e
i nt e gr al of t h e a ut o c orr el ati o n f u n cti o n of t h e i nt er di ff u si o n fl u x,
C c c (t),

[ 2 0, 2 5, 2 6, 2 9 – 3 7] a s

L c c =
V

3 k B T
li m
t→ ∞

t

0

C c c t dt ( 8)

Ta ki n g i nt o a c c o u nt E q u ati o n s ( 5) a n d ( 6), E q u ati o n ( 8) c a n b e
r e writt e n f or L̃ c c , a s

L̃ c c =
k B T

m c

li m
t→ ∞

t

0

ε c t dt ( 9)

w h er e ε c (t) = J c (t) J c ( 0) / J 2
c = m c V

2 C c c (t)/ 3 N c 1 c 2 k B T
(C c c ( 0) = J 2

c , ε c ( 0) = 1) i s t h e n or m ali z e d a ut o c orr el ati o n
f u n cti o n of t h e i nt er di ff u si o n fl u x.

M or e o v er, it c a n b e s h o w n [ 2 6] t h at i n a bi n ar y  m elt t h er e e xi st s
a r el ati o n b et w e e n D 1 , D 2 , a n d L̃ c c w hi c h c a n b e pr e s e nt e d i n t h e
f or m of t h e s o- c all e d  D ar k e n – M a n ni n g e q u ati o n,[ 3 8] a s

L̃ c c =
D c

= S (c 2 D 1 + c 1 D 2 ) ( 1 0)

T hi s e q u ati o n  w a s ori gi n all y i ntr o d u c e d i n 1 9 4 8 b y  D ar k e n t o
d e s cri b e d at a o n i nt er di ff u si o n i n a bi n ar y cr y st al c o u pl e d vi a t h e
v a c a n c y  m e c h a ni s m pri m aril y o n t h e b a si s of  m a cr o s c o pi c ar g u-
m e nt s  w hi c h r e s ult e d i n a n o v er si g ht of t h e f a ct or S .[ 3 9] L at er,
i n 1 9 6 1,  M a n ni n g p ut f or w ar d a n e xt e n si o n of t h e  D ar k e n e q u a-
ti o n, i n t h e g e n er al c o nt e xt of c h e mi c al di ff u si o n i n cr y st al s, i n g e-
ni o u sl y d e m o n str ati n g t h at a c ert ai n c orr e cti o n f a ct or of t h e  mi-
cr o s c o pi c ki n eti c ori gi n, S ,  m u st b e i n cl u d e d i nt o t h e e q u ati o n.[ 4 0]

R e c e ntl y, a n a n al yti c al e x pr e s si o n f or t h e  O n s a g er c o e ffi ci e nt
f or  m a s s tr a n s p ort a n d t w o s elf- di ff u si o n c o e ffi ci e nt s of s p e ci e s
i n a bi n ar y  m elt h a s b e e n d eri v e d[ 2 6] wit hi n t h e fr a m e w or k of t h e
M ori – Z w a n zi g f or m ali s m of st ati sti c al  m e c h a ni c s, [ 3 4, 4 1 – 4 4] u si n g
t h e g e n er ali z e d L a n g e vi n e q u ati o n s f or t h e at o mi c v el o citi e s a n d
t h e i nt er di ff u si o n fl u x.  T h e d eri v e d e x pr e s si o n a c c o u nt s f or t h e
m a nif e st ati o n of  mi cr o s c o pi c ( d y n a mi c) cr o s s- c orr el ati o n e ff e ct s
i n t h e ki n eti c s of c oll e cti v e di ff u si o n i n t h e f or m

S =
L̃ c c

c 2 D 1 + c 1 D 2

= S 0 1 +
W 1 2

k B T
( 1 1)

w h er e t h e ki n eti c f a ct or S 0 ( 0 < S 0 ≤ 1) i s gi v e n b y

S 0 =
m 2 D 1 D 2

m 2 D 1 D 2 + c 1 c 2 (m 1 D 1 − m 2 D 2 )
2

( 1 2)

w hil e

W 1 2 =

∞

0

P 1 2 (t)dt ( 1 3)
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i s r el at e d t o a c oll e cti v e e n er g y g e n er ati o n – di s si p ati o n e ff e ct d u e
t o t h e c orr el ati o n s b et w e e n fl u ct u ati o n s of t h e i nt er di ff u si o n fl u x
a n d t h e f or c e, R 1 2 (t), c a u s e d b y t h e di ff er e n c e i n t h e a v er a g e r a n-
d o m a c c el er ati o n s of at o m s of di ff er e nt s p e ci e s, a s gi v e n b y

P 1 2 (t) =
V

3 N c 1 c 2

R 1 2 (t) J c (0 ) ( 1 4)

A c c or di n gl y, t hi s f or c e c a n b e e x pr e s s e d a s

R 1 2 (t) = N c 1 c 2 m c

R̄ 1 (t)

m 1

−
R̄ 2 (t)

m 2

( 1 5)

w h er e

R̄ α (t) =
1

N α

N α

i= 1

R α i (t) ( 1 6)

d e n ot e s t h e a v er a g e r a n d o m f or c e a cti n g o n at o m s of s p e ci e s
α at ti m e t,  w hil e R α i (t) i s t h e u s u al r a n d o m f or c e i n t h e g e n-
er ali z e d L a n g e vi n e q u ati o n f or a n at o mi c v el o cit y of s p e ci e s α ,
w hi c h: i) v a ni s h e s i n t h e  m e a n, R α i (t) = 0, a n d ii) i s u n c orr e-
l at e d  wit h t h e at o mi c v el o cit y, s o t h at R α i (t)v α i ( 0) = 0 f or all
ti m e s.[ 3 3, 3 4, 4 3, 4 4]

A s it h a s b e e n p oi nt e d o ut i n r ef. [ 2 6], W 1 2 i s r el at e d t o t h e
a v er a g e a m o u nt of g e n er at e d – di s si p at e d e n er g y d u e t o t h e c or-
r el ati o n s b et w e e n fl u ct u ati o n s of R 1 2 a n d J c .  H e n c e, it f oll o w s
t h at, i n t h er m al e q uili bri u m, t h e a b s ol ut e v al u e of W 1 2 c a n n ot e x-
c e e d t h e c h ar a ct eri sti c t h er m al e n er g y, k B T , p er e a c h d e gr e e of
fr e e d o m ( o ut of 3 N c 1 c 2 d e gr e e s of fr e e d o m r el at e d t o t h e fl u ct u-
ati o n s of J c a n d R 1 2 ), a c c or di n g t o t h e e q ui p artiti o n l a w, s o t h at
|W 1 2 | ≤ k B T .

F urt h er m or e, i n r ef. [ 2 6], it h a s b e e n i n di c at e d t h at i n bi n ar y
mi xi n g  m elt s e x hi biti n g c h e mi c al or d eri n g R 1 2 (t) s h o ul d cr e at e
( o n a v er a g e o v er t h e c orr el ati o n ti m e) a n o bt u s e a n gl e  wit h J c ( 0),
t e n di n g t o e ff e cti v el y s u p pr e s s it s d e vi ati o n fr o m e q uili bri u m
d uri n g fl u ct u ati o n s.  A s a r e s ult, it c a n b e e x p e ct e d t h at W 1 2 < 0
f or bi n ar y  mi xi n g  m elt s e x hi biti n g c h e mi c al or d eri n g (i. e., a l ar g e
n e g ati v e e nt h al p y of f or m ati o n). I n c o ntr a st, f or bi n ar y  m elt s  wit h
d e mi xi n g t e n d e n c y, it c a n b e e x p e ct e d t h at W 1 2 > 0 si n c e R 1 2 (t)
s h o ul d cr e at e ( o n a v er a g e o v er t h e c orr el ati o n ti m e) a n a c ut e a n-
gl e  wit h J c ( 0), t e n di n g t o e ff e cti v el y sti m ul at e it s d e vi ati o n fr o m
e q uili bri u m d uri n g fl u ct u ati o n s.

M or e o v er,  w e s h o ul d n ot e t h at t h e r el ati o n s gi v e n b y E q u a-
ti o n s ( 1 1) –( 1 3) f oll o w, a s t h e h y dr o d y n a mi c li mit (t → ∞ ), fr o m
a  V olt err a t y p e c o n v ol uti o n e q u ati o n d eri v e d i n r ef. [ 2 6].  T hi s
e q u ati o n r el at e s t o e a c h ot h er ε c (t), P 1 2 (t) a n d t h e t w o s o- c all e d
m e m or y k er n el s (f u n cti o n s) ulti m at el y d e fi n e d vi a t h e a ut o-
c orr el ati o n f u n cti o n s of t h e r a n d o m f or c e s, R α i (t) (α = 1 , 2),
wit hi n t h e fr a m e w or k of t h e  M ori – Z w a n zi g f or m ali s m a s K α (t) =
R α i (t) R α i ( 0) / m 2

α v 2
α i = R α i (t) R α i ( 0) / 3 m α k B T .[ 3 3, 3 4, 4 3, 4 4] S p e ci-

fi c all y, it c a n b e pr e s e nt e d i n t h e f or m

P 1 2 (t)

k B T
=

d ε c (t)

dt

+

t

0

c 2

m 2

m
K 1 t− t + c 1

m 1

m
K 2 t− t ε c t dt ( 1 7)

Si n c e ε c (t), K 1 (t), a n d K 2 (t) ar e a ut o c orr el ati o n f u n cti o n s, t h e y
m u st b e e v e n f u n cti o n s of ti m e b y t h e d e fi niti o n.  T h e n, it f oll o w s
fr o m E q u ati o n ( 1 7) t h at P 1 2 (t) i s a n o d d f u n cti o n of ti m e, s o t h at
P 1 2 (− t) = − P 1 2 (t).  C o n s e q u e ntl y, it c a n b e e x p a n d e d i n a n o d d
p o w er  Ta yl or s eri e s i n ti m e e v al u at e d at t = 0, a s

P 1 2 (t) =

∞

n = 0

t 2 n + 1

(2 n + 1 )!
P

(2 n + 1 )
1 2 (0 ) ( 1 8)

w h er e P
( 2n + 1)
1 2 ( 0) d e n ot e s t h e ( 2n + 1) d eri v ati v e of P 1 2 (t) e v al u-

at e d at t = 0.  H e n c e, t h e v al u e of P 1 2 (t) i n t h e s h ort ti m e li mit
t → 0 c a n b e a p pr o xi m at e d u si n g e x pr e s si o n f or t h e fir st d eri v a-
ti v e of P 1 2 (t) e v al u at e d t = 0 b y  m e a n s of E q u ati o n ( 1 7), a s

˙P 1 2 (0 )

k B T
=

1

k B T

d P 1 2 (t)

dt t= 0

= c 2

m 2

m
2
1 + c 1

m 1

m
2
2 − 2

c ( 1 9)

w h er e

2
α = K α (0 ) =

R 2
α i

3 m α k B T
=

m α v̇
2
α i

3 k B T
( 2 0)

i s t h e s o- c all e d Ei n st ei n fr e q u e n c y, at  w hi c h a t a g g e d at o m of
s p e ci e s α (α = 1 , 2)  w o ul d vi br at e o n a v er a g e if it  w er e u n d er-
g oi n g s m all o s cill ati o n s i n t h e p ot e nti al  w ell s pr o d u c e d b y t h e
s urr o u n di n g at o m s  w h e n  m ai nt ai n e d at t h eir  m e a n e q uili bri u m
p o siti o n s ar o u n d t h e t a g g e d at o m. [ 3 4] M e a n w hil e,

2
c = − ε̈ c (0 ) = −

d 2 ε c (t)

dt 2
t= 0

=
m c V

2 ˙J 2
c

3 N c 1 c 2 k B T
( 2 1)

c a n b e si mil arl y i nt er pr et e d a s a n e ff e cti v e Ei n st ei n fr e q u e n c y
a s s o ci at e d  wit h e a c h d e gr e e of fr e e d o m r el at e d t o t h e fl u ct u a-
ti o n s of t h e i nt er di ff u si o n fl u x. It s h o ul d b e n ot e d t h at t h e i n st a n-
t a n e o u s v al u e s of v̇ α i = d v α i (t)

dt
= − m − 1

α ∇ α i U a n d J̇ c = d J c (t)

dt
=

(− 1) α m − 1
c

N α
i= 1 ∇ α i U ( w h er e U i s t h e t ot al p ot e nti al e n er g y of

t h e s y st e m) f or a gi v e n at o mi c c o n fi g ur ati o n ar e r o uti n el y e v al u-
at e d i n  M D si m ul ati o n s i n t er m s of t h e i nt er at o mi c i nt er a cti o n s.
T h u s, i n t h e s h ort ti m e li mit t → 0, P 1 2 (t) c a n b e a p pr o xi m at e d
a s

P 1 2 (t)

k B T
≈ σ 1 2

2
c t ( 2 2)

w h er e

σ 1 2 =
c 2 m 2

2
1 + c 1 m 1

2
2

m 2
c

− 1 ( 2 3)

i s t h e di m e n si o nl e s s f a ct or  w hi c h d e fi n e s t h e i niti al si g n of P 1 2 (t)
a s t h e c orr el ati o n b et w e e n R 1 2 (t) a n d J c ( 0) st art s t o d e v el o p  wit h
ti m e.  A s a r e s ult, σ 1 2 < 0 a n d σ 1 2 > 0 i n di c at e t h at R 1 2 (t) t e n d s t o
i niti all y cr e at e  wit h J c ( 0) o bt u s e a n d a c ut e a n gl e s, r e s p e cti v el y. I n
a d diti o n,  w e s h o ul d n ot e t h at li m c α → 0 c = α a s it f oll o w s fr o m
E q u ati o n s ( 4), ( 2 0), a n d ( 2 1), s o t h at li m c α → 0 σ 1 2 = 0 ( α = 1 , 2).

It c a n b e e x p e ct e d t h at f or a bi n ar y  mi xi n g  m elt e x hi biti n g
c h e mi c al or d eri n g i n t h e n or m al li q ui d st at e (i. e., a b o v e it s li q-
ui d u s t e m p er at ur e), o n e s h o ul d o b s er v e t h at b ot h σ 1 2 < 0 a n d
W 1 2 < 0. I n ot h er  w or d s, a n i niti al ( t → 0) o bt u s e a n gl e ( σ 1 2 < 0)
b et w e e n R 1 2 (t) a n d J c ( 0) s h o ul d r e m ai n pr e d o mi n a ntl y o bt u s e
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o v er t h e c orr el ati o n p eri o d t o e n s ur e, a c c or di n g t o E q u ati o n ( 1 3),
a n e g ati v e v al u e of W 1 2 w hi c h i s n at ur all y e x p e ct e d fr o m t h e t h er-
m o d y n a mi c p oi nt of vi e w f or t h e n or m al li q ui d st at e of a bi n ar y
mi xi n g  m elt e x hi biti n g c h e mi c al or d eri n g.  H o w e v er, o n e  m a y a s-
s u m e t h at, i n s o m e c a s e s, t h e s h ort-r a n g e at o mi c or d eri n g,  w hi c h
i s i n h er e nt i n t h e n or m al li q ui d st at e of a bi n ar y  mi xi n g  m elt, c a n
pr o m ptl y b e c o m e u nf a v or a bl e i n t h e u n d er c o ol e d li q ui d st at e of
t h e bi n ar y  m elt.  H e n c e, it i s r e a s o n a bl e t o e x p e ct i n s u c h a c a s e
t h at a n i niti al o bt u s e a n gl e b et w e e n R 1 2 (t) a n d J c ( 0)  m a y pri n ci-
p all y tr a n sf or m t o a n a c ut e a n gl e t o pr o m ot e t h e e v ol uti o n of a n
u n d er c o ol e d bi n ar y  mi xi n g  m elt t o w ar d a  m or e t h er m o d y n a m-
i c all y st a bl e st at e  wit h a s o m e w h at di ff er e nt t y p e of at o mi c or-
d eri n g.  A s a r e s ult, o n e  m a y o b s er v e W 1 2 > 0 i n t h e u n d er c o ol e d
li q ui d st at e of a bi n ar y  mi xi n g  m elt e x hi biti n g c h e mi c al or d er-
i n g.  M or e o v er, at s u ffi ci e ntl y l ar g e u n d er c o oli n g of s o m e bi n ar y
mi xi n g  m elt s e x hi biti n g c h e mi c al or d eri n g, W 1 2 m a y e v e n e x-
c e e d t h e u p p er b o u n d of it s e q uili bri u m r a n g e, d e m o n str ati n g
di v er gi n g b e h a vi or, s o t h at W 1 2 > k B T .  T h er ef or e,  w e  m a y c o n-
cl u d e t h at σ 1 2 < 0 a n d W 1 2 < 0 c a n b e c o n si d er e d a s n e c e s s ar y
c o n diti o n s f or a bi n ar y  mi xi n g  m elt e x hi biti n g c h e mi c al or d er-
i n g t o b e i n t h er m o d y n a mi c e q uili bri u m.  M e a n w hil e, a r el ati v e
c h a n g e i n W 1 2 c a n b e u s e d t o c h ar a ct eri z e v ari ati o n i n d y n a m-
i c al st a bilit y of at o mi c or d eri n g i n a bi n ar y  mi xi n g  m elt u p o n
u n d er c o oli n g.

4.  R e s ult s a n d  Di s c u s si o n

T h e t e m p er at ur e of 2 2 0 0  K, b el o w  w hi c h t h e c o oli n g r at e of
a b o ut 4  K n s − 1 w a s i m pl e m e nt e d i n o ur  M D si m ul ati o n s of  Ni –
Zr  m elt s, i s  w ell a b o v e t h e e q uili bri u m  m elti n g t e m p er at ur e,
T m ≈ 2 1 0 9  K, f or t h e  m o d el of b o d y- c e nt er e d c u bi c zir c o ni u m
( B C C  Zr).[ 1 5] T h e e q uili bri u m  m elti n g t e m p er at ur e f or t h e  m o d el
of f a c e- c e nt er e d c u bi c ni c k el ( F C C  Ni) i s T m ≈ 1 7 2 8  K. [ 1 6] B ot h
m elti n g t e m p er at ur e s ar e r e pr o d u c e d i n cl o s e a gr e e m e nt  wit h
t h e t ar g et e x p eri m e nt al v al u e s of 2 1 2 8  K a n d 1 7 2 8  K f or  B C C  Zr
a n d F C C  Ni, r e s p e cti v el y. [ 1 5, 1 6] W e s h o ul d n ot e t h at at t h e c o n-
si d er e d c o oli n g r at e t h e fir st cr y st alli z ati o n  w a s d et e ct e d f or t h e
m o d el of  Ni 7 5 Zr 2 5 m elt at 1 6 5 0  K.  M e a n w hil e, f or t h e  m o d el s of
p ur e  Zr a n d  Ni  m elt s cr y st alli z ati o n s  w er e o b s er v e d, r e s p e cti v el y,
at 1 5 5 0  K a n d 1 1 5 0  K, t h at i s, at t h e r e d u c e d t e m p er at ur e s ( T / T m )
a p pr o xi m at el y e q u al t o 0. 7 4 a n d 0. 6 7. F urt h er m or e, at 1 1 5 0  K
w e al s o d et e ct e d t h e o n s et of cr y st alli z ati o n i n t h e  m o d el s of
Ni 1 2. 5 Zr 8 7. 5 a n d  Ni 8 7. 5 Zr 1 2. 5 m elt s,  w hil e n o cr y st alli z ati o n  w a s n o-
ti c e d d uri n g t h e q u e n c hi n g of t h e  m o d el s of  Ni2 5 Zr 7 5 , Ni3 7. 5 Zr 6 2. 5 ,
Ni 5 0 Zr 5 0 a n d  Ni 6 2. 5 Zr 3 7. 5 m elt s d o w n t o 0 K.

W e ar e n ot a w ar e of a n y si m ul ati o n d at a o n t h e e q uili bri u m
m elti n g pr o p erti e s of  Ni 1 2. 5 Zr 8 7. 5 , Ni7 5 Zr 2 5 , a n d Ni8 7. 5 Zr 1 2. 5 al-
l o y s  wit h t h e i nt er at o mi c p ot e nti al d e v el o p e d i n r ef. [ 1 4].  N e v-
ert h el e s s, e x p eri m e nt al d at a [ 4 5] o n t h e li q ui d u s t e m p er at ur e s of
Ni 1 2. 5 Zr 8 7. 5 ( 1 8 1 0  K) a n d  Ni8 7. 5 Zr 1 2. 5 ( 1 5 4 0  K) all o y s all o w f or e sti-
m ati o n of t h e r e d u c e d cr y st alli z ati o n t e m p er at ur e s of t h e  m o d-
el s of  Ni 1 2. 5 Zr 8 7. 5 ( 0. 6 4) a n d  Ni8 7. 5 Zr 1 2. 5 ( 0. 7 5)  m elt s  w hi c h ar e
i n r e a s o n a bl y g o o d a gr e e m e nt  wit h t h e a b o v e m e nti o n e d si mil ar
d at a f or t h e  m o d el s of p ur e  Zr a n d  Ni  m elt s.  T h e n, t h e li q ui d u s
t e m p er at ur e of t h e  m o d el of  Ni7 5 Zr 2 5 m elt c a n b e e sti m at e d b y
m a ki n g u s e of t h e r e d u c e d cr y st alli z ati o n t e m p er at ur e of 0. 7 5 f or
t h e  m o d el of  Ni8 7. 5 Zr 1 2. 5 m elt.  T hi s i s t h e  m o d el  wit h t h e cl o s-
e st all o y c o m p o siti o n t o t h e  m o d el of  Ni 7 5 Zr 2 5 m elt f or  w hi c h  w e

h a v e a n a s s e s s m e nt of t h e r e d u c e d cr y st alli z ati o n t e m p er at ur e
at t h e c o oli n g r at e of a b o ut 4  K n s − 1 .  A s a r e s ult,  w e e sti m at e
t h e li q ui d u s t e m p er at ur e of t h e  m o d el of  Ni7 5 Zr 2 5 m elt a s a b o ut
1 6 5 0 / 0 .7 5 ≈ 2 2 0 0  K.  T hi s i s a b o ut 2 9 % hi g h er t h a n t h e e x p eri-
m e nt al v al u e of 1 7 0 0  K. [ 4 5]

T h e f a ct t h at t h e t hr e e li q ui d u s t e m p er at ur e s of  Ni 1 2. 5 Zr 8 7. 5 ,
Ni 7 5 Zr 2 5 , a n d Ni8 7. 5 Zr 1 2. 5 all o y s ar e pr e di ct e d b y t h e e m pl o y e d i n-
t er at o mi c p ot e nti al[ 1 4] at t hi s r e a s o n a bl e l e v el of a c c ur a c y d e m o n-
str at e s t h e g o o d tr a n sf er a bilit y t o ot h er all o y c o m p o siti o n s b e-
si d e s p ur e Ni a n d Zr, a s w ell a s Ni Zr 2 a n d  Ni Zr all o y s i n cl u d e d
i n t h e p ot e nti al fit.  T h e l ar g e st di s cr e p a n c y,  w hi c h i s e sti m at e d
f or  Ni7 5 Zr 2 5 all o y, i s at t h e t y pi c al l e v el of a c c ur a c y e x p e ct e d f or
t h e pr e di cti o n of  m at eri al s pr o p erti e s n ot i n cl u d e d i n t h e p ot e n-
ti al fit  wit hi n t h e fr a m e w or k of eit h er E A M or Fi n ni s – Si n cl air
f or m ali s m.[ 1 4 – 1 8, 2 1] I n  A p p e n di x  A ( s e e S u p p orti n g I nf or m ati o n
o nli n e),  w e s h o w f or ill u str ati o n p ur p o s e t h e p air di stri b uti o n
f u n cti o n s c al c ul at e d f or t h e  m o d el  Ni,  Zr,  Ni8 7. 5 Zr 1 2. 5 , Ni7 5 Zr 2 5 ,
a n d  Ni 1 2. 5 Zr 8 7. 5 s y st e m s at t e m p er at ur e s i n t h e vi ci nit y of t h e o n-
s et of cr y st alli z ati o n.

T h e c o m p o siti o n d e p e n d e n ci e s of all t h e di ff u si o n pr o p erti e s
r e p ort e d h er e ar e pri m aril y e v al u at e d i n t h e t e m p er at ur e r a n g e
b et w e e n 2 2 0 0 a n d 1 2 0 0  K.  M e a n w hil e, t h e fit of t h e d at a a c c or d-
i n g t o t h e  Arr h e ni u s l a w D 0 e x p( − E A / k B T ) ( w h er e E A i s t h e a cti-
v ati o n e n er g y of t h e di ff u si o n pr o c e s s a n d D 0 i s t h e t e m p er at ur e-
i n d e p e n d e nt pr ef a ct or) i s  m ai nl y p erf or m e d i n t h e t e m p er at ur e
r a n g e b et w e e n 2 2 0 0 a n d 1 4 0 0  K, si n c e b el o w 1 4 0 0  K s o m e n ot a bl e
d e vi ati o n s fr o m t h e  Arr h e ni u s l a w ar e o b s er v e d f or a n u m b er of
t h e st u di e d  m o d el s y st e m s.  D u e t o t h e cr y st alli z ati o n o b s er v e d
i n t h e  m o d el s of  Ni7 5 Zr 2 5 a n d  Zr  m elt s at 1 6 5 0  K a n d 1 5 5 0  K, r e-
s p e cti v el y, o nl y t h e d at a e xtr a p ol at e d ( a c c or di n g t o t h e  Arr h e ni u s
l a w) fr o m hi g h t e m p er at ur e s ar e a v ail a bl e f or t h e s e  m elt s b el o w
1 7 0 0  K a n d 1 6 0 0  K, r e s p e cti v el y.

I n Fi g ur e 1 a,  w e s h o w t h e t e m p er at ur e d e p e n d e n c e ( a n
Arr h e ni u s-t y p e pl ot) of t h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d
Zr i n t h e  m o d el s of p ur e  Ni a n d  Zr  m elt s, r e s p e cti v el y.  T h e s e
si m ul ati o n r e s ult s ar e s h o w n al o n g  wit h a v ail a bl e (i n t h e t e m p er-
at ur e r a n g e a b o ut 1 7 2 6 ± 2 0 0  K) e x p eri m e nt al  m e a s ur e m e nt s
f or p ur e  Ni  m elt.[ 4 6, 4 7] I n Ta bl e 1 , t h e c al c ul at e d v al u e s of t h e s elf-
di ff u si o n c o e ffi ci e nt s ar e pr e s e nt e d  wit h t h e t e m p er at ur e st e p of
1 0 0  K.  M e a n w hil e, i n Ta bl e 2 ,  w e gi v e t h e r e s ult s of t h e fit of
t h e d at a b et w e e n 2 2 0 0 a n d 1 4 0 0  K a c c or di n g t o t h e  Arr h e ni u s
l a w.  A s it c a n b e s e e n i n Fi g ur e 1 a, c o m p ari s o n of t h e si m ul ati o n
a n d e x p eri m e nt al d at a f or t h e s elf- di ff u si o n c o e ffi ci e nt of  Ni i n
p ur e  Ni  m elt r e v e al s a g o o d a gr e e m e nt.  T h e fit of e x p eri m e nt al
d at a f or  Ni a c c or di n g t o t h e  Arr h e ni u s l a w gi v e s E A ≈ 0 .4 7 e V
a n d D 0 ≈ 0 .7 7 × 1 0 − 7 m 2 s − 1 .[ 4 8] B ot h t h e a cti v ati o n e n er g y a n d
t h e e x p o n e nti al pr ef a ct or e xtr a ct e d fr o m e x p eri m e nt al d at a ar e i n
cl o s e a gr e e m e nt  wit h o ur si m ul ati o n r e s ult s E A ≈ 0 .4 5 e V a n d
D 0 ≈ 0 .7 3 × 1 0 − 7 m 2 s − 1 ( s e e  Ta bl e 2).  W e ar e n ot a w ar e of r el-
e v a nt e x p eri m e nt al d at a f or p ur e  Zr  m elt.  M e a n w hil e, it i s i m-
p ort a nt t o n ot e t h at t h e c al c ul at e d ( b et w e e n 2 2 0 0 a n d 1 6 0 0  K)
v al u e s of t h e s elf- di ff u si o n c o e ffi ci e nt of  Zr i n t h e  m o d el of p ur e
Zr  m elt a s  w ell a s it s  Arr h e ni u s p ar a m et er s, E A ≈ 0 .4 9 e V a n d
D 0 ≈ 0 .7 7 × 1 0 − 7 m 2 s − 1 , t ur n o ut t o b e f airl y cl o s e t o t h o s e f or
t h e s elf- di ff u si o n c o e ffi ci e nt of  Ni i n t h e  m o d el of p ur e  Ni  m elt
( s e e Fi g ur e 1 a a n d  Ta bl e s 1 a n d 2).

I n Fi g ur e 1 b – d,  w e s h o w t h e t e m p er at ur e d e p e n d e n c e of
t h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d  Zr i n t h e  m o d el s of
Ni 6 2. 5 Zr 3 7. 5 , Ni5 0 Zr 5 0 , a n d Ni3 7. 5 Zr 6 2. 5 m elt s, r e s p e cti v el y.  T h e s e
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( a) ( b)

( c) ( d)

Fi g ur e 1. Arr h e ni u s pl ot of t h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni, D Ni , ( o p e n s q u ar e s) a n d  Zr, D Zr , ( o p e n di a m o n d s) i n t h e  m o d el s of: a) p ur e  Ni a n d  Zr
m elt s, b)  Ni 6 2. 5 Zr 3 7. 5 m elt, c)  Ni 5 0 Zr 5 0 m elt, a n d d)  Ni 3 7. 5 Zr 6 2. 5 m elt. T h e li n e s di s pl a y t h e fit s of t h e si m ul ati o n d at a. a) T h e h alf- s oli d s q u ar e s s h o w
e x p eri m e nt al d at a f or  Ni, [ 4 6, 4 7] w hil e t h e t hi n li n e di s pl a y s t h e fit of t h e e x p eri m e nt al d at a a c c or di n g t o r ef. [ 4 8]. b) T h e s oli d s q u ar e s a n d di a m o n d s s h o w
e x p eri m e nt al d at a f or D Ni a n d D Zr i n  Ni6 4 Zr 3 6 m elt, r e s p e cti v el y. [ 5, 1 0] c) T h e s oli d s q u ar e s s h o w e x p eri m e nt al d at a f or D Ni i n  Ni5 0 Zr 5 0 m elt. [ 5] d) T h e
s oli d s q u ar e s a n d di a m o n d s s h o w e x p eri m e nt al d at a f or D Ni a n d D Zr i n  Ni3 6 Zr 6 4 m elt, r e s p e cti v el y. [ 5, 1 0]

all o y c o m p o siti o n s ar e c h o s e n i n Fi g ur e 1 b – d t o f a cilit at e c o m-
p ari s o n of o ur si m ul ati o n r e s ult s  wit h a v ail a bl e e x p eri m e nt al
m e a s ur e m e nt s of t h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d  Zr i n
Ni – Zr  m elt s. [ 5, 1 0] M e a n w hil e, i n Fi g ur e 2 ,  w e s h o w o ur si m ul ati o n
r e s ult s f or t h e ki n eti c p art of t h e i nt er di ff u si o n c o e ffi ci e nt L̃ c c

( s e e E q u ati o n s ( 9) a n d ( 1 0), a s  w ell a s  A p p e n di x  B i n S u p p orti n g
I nf or m ati o n o nli n e f or d et ail s) i n t h e s a m e  m o d el s of  Ni 6 2. 5 Zr 3 7. 5 ,
Ni 5 0 Zr 5 0 a n d  Ni 3 7. 5 Zr 6 2. 5 m elt s.  W e ar e n ot a w ar e of a n y r el e v a nt
e x p eri m e nt al d at a t o b e i n cl u d e d i n Fi g ur e 2. F or all t h e st u di e d
all o y c o m p o siti o n s t h e c al c ul at e d di ff u si o n c o e ffi ci e nt s, D Ni ,
D Zr , a n d L̃ c c , ar e pr e s e nt e d i n  Ta bl e 1  wit h t h e t e m p er at ur e st e p
of 1 0 0  K,  w hil e t h e r e s ult s of t h e fit of t h e d at a a c c or di n g t o t h e
Arr h e ni u s l a w ar e s u m m ari z e d i n  Ta bl e 2. I n Fi g ur e 1 b, it c a n b e
s e e n t h at a v er y g o o d a gr e e m e nt  wit h t h e e x p eri m e nt al d at a [ 5, 1 0]

i s o b s er v e d f or b ot h D Ni a n d D Zr i n t h e  m o d el of  Ni6 2. 5 Zr 3 7. 5 m elt.
F or t h e  m o d el s of  Ni 5 0 Zr 5 0 a n d  Ni 3 7. 5 Zr 6 2. 5 m elt s t h e c al c ul at e d
v al u e s of D Ni ar e al s o i n cl o s e a gr e e m e nt  wit h e x p eri m e nt ( s e e
Fi g ur e 1 c, d).  T h e si m ul ati o n d at a f or D Ni s o m e w h at o v er e sti m at e
t h e e x p eri m e nt al  m e a s ur e m e nt s f or t h e s e all o y c o m p o siti o n s.[ 5]

E x p eri m e nt al d at a f or D Zr i n  Ni5 0 Zr 5 0 m elt ar e n ot a v ail a bl e i n
t h e lit er at ur e,  w hil e t h e e x p eri m e nt al d at a[ 1 0] f or D Zr i n  Ni3 6 Zr 6 4

m elt ar e ti g htl y s pr e a d ( wit hi n t h e err or of t h e e x p eri m e nt al  m e a-
s ur e m e nt s) ar o u n d o ur si m ul ati o n d at a f or D Zr i n  Ni3 7. 5 Zr 6 2. 5

m elt, a s it c a n b e s e e n i n Fi g ur e 1 d. I n c o ntr a st t o t h e  m o d el of
p ur e  Ni ( s e e Fi g ur e 1 a), it c a n b e s e e n i n Fi g ur e s 1 b – d a n d 2,
t h at a n ot a bl e d e vi ati o n fr o m t h e  Arr h e ni u s l a w i s o b s er v e d i n
t h e  m o d el s of  Ni6 2. 5 Zr 3 7. 5 , Ni5 0 Zr 5 0 , a n d Ni3 7. 5 Zr 6 2. 5 m elt s f or all
t hr e e di ff u si o n c o e ffi ci e nt s D Ni , D Zr , a n d L̃ c c b el o w 1 4 0 0 – 1 3 5 0  K.
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Ta b l e 1 . Di ff u si o n c o e ffi ci e nt s (i n u nit s of 1 0 − 9 m 2 s − 1 ) c al c ul at e d f or t h e  m o d el  Ni – Zr s y st e m i n t h e li q ui d st at e.

Te m p er at ur e [ K] 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0

P ur e  Ni D Ni 0. 9 4 1. 3 4 1. 7 8 2. 2 4 2. 8 3 3. 3 6 4. 0 1 4. 6 8 5. 3 6 6. 0 6 7. 0 9

D Ni 0. 4 1 0. 7 2 1. 1 1 1. 5 3 2. 0 8 2. 6 7 3. 2 7 3. 8 0 4. 7 3 5. 3 7 6. 1 8

Ni 8 7. 5 Zr 1 2. 5 D Zr 0. 1 2 0. 2 7 0. 5 0 0. 7 9 1. 0 7 1. 4 3 1. 9 2 2. 3 4 2. 9 2 3. 6 2 4. 0 1

L̃ c c 0. 2 2 0. 3 9 0. 6 2 0. 8 8 1. 2 3 1. 6 5 1. 9 4 2. 5 4 2. 9 5 3. 3 9 4. 0 0

D Ni —  —  —  —  — 1. 9 6 2. 3 7 3. 0 2 3. 6 1 4. 3 6 5. 1 5

Ni 7 5 Zr 2 5 D Zr —  —  —  —  — 0. 8 9 1. 1 9 1. 6 3 1. 9 6 2. 4 7 3. 0 3

L̃ c c —  —  —  —  — 0. 9 9 1. 2 2 1. 5 4 1. 9 1 2. 2 7 2. 7 2

D Ni 0. 1 9 0. 4 2 0. 7 4 1. 1 3 1. 5 5 2. 0 6 2. 5 9 3. 1 4 3. 7 9 4. 4 5 5. 1 9

Ni 6 2. 5 Zr 3 7. 5 D Zr 0. 1 0 0. 2 6 0. 4 6 0. 7 1 1. 0 4 1. 3 5 1. 7 9 2. 1 4 2. 6 2 3. 1 6 3. 5 6

L̃ c c 0. 1 2 0. 2 4 0. 4 1 0. 6 2 0. 8 8 1. 1 9 1. 4 0 1. 7 4 2. 0 5 2. 4 6 2. 8 5

D Ni 0. 4 1 0. 7 2 1. 0 9 1. 5 6 2. 0 1 2. 5 7 3. 1 5 3. 8 1 4. 4 5 4. 9 7 5. 8 2

Ni 5 0 Zr 5 0 D Zr 0. 3 1 0. 5 4 0. 8 3 1. 1 7 1. 5 7 1. 9 7 2. 4 1 2. 9 4 3. 4 5 3. 9 9 4. 4 5

L̃ c c 0. 2 8 0. 4 8 0. 7 0 0. 9 4 1. 2 6 1. 6 0 1. 9 1 2. 2 9 2. 6 3 3. 0 9 3. 5 1

D Ni 0. 6 1 0. 9 7 1. 4 0 1. 9 4 2. 4 4 3. 0 4 3. 5 3 4. 3 2 4. 9 7 5. 7 5 6. 4 6

Ni 3 7. 5 Zr 6 2. 5 D Zr 0. 4 8 0. 7 7 1. 1 2 1. 5 4 1. 9 6 2. 4 3 2. 9 2 3. 4 8 4. 0 1 4. 6 4 5. 3 6

L̃ c c 0. 4 4 0. 7 0 1. 0 1 1. 3 6 1. 7 5 2. 1 3 2. 5 3 2. 9 9 3. 4 3 3. 9 3 4. 6 1

D Ni 0. 8 0 1. 1 8 1. 7 3 2. 2 1 2. 8 4 3. 4 5 4. 1 0 4. 9 2 5. 6 5 6. 4 6 7. 0 7

Ni 2 5 Zr 7 5 D Zr 0. 5 7 0. 8 8 1. 2 9 1. 6 9 2. 1 3 2. 6 7 3. 2 1 3. 7 8 4. 3 6 5. 0 1 5. 5 1

L̃ c c 0. 6 3 0. 9 7 1. 3 8 1. 8 2 2. 3 0 2. 7 6 3. 3 3 3. 8 2 4. 4 4 5. 1 1 5. 6 2

D Ni 0. 8 2 1. 4 0 1. 9 9 2. 4 7 3. 1 3 3. 6 6 4. 1 7 5. 3 9 5. 8 0 6. 6 6 7. 6 0

Ni 1 2. 5 Zr 8 7. 5 D Zr 0. 5 0 0. 9 0 1. 3 2 1. 7 3 2. 2 3 2. 7 6 3. 3 5 3. 8 3 4. 4 3 5. 1 6 5. 8 8

L̃ c c 0. 8 4 1. 2 6 1. 6 9 2. 2 3 2. 8 0 3. 2 8 3. 8 9 4. 1 0 5. 2 7 6. 0 6 6. 6 5

P ur e  Zr D Zr —  —  —  — 1. 9 5 2. 6 7 3. 2 4 3. 7 6 4. 3 2 5. 0 1 5. 7 6

Ta b l e 2 . Arr h e ni u s p ar a m et er s of t h e di ff u si o n c o e ffi ci e nt s e v al u at e d f or t h e  m o d el  Ni – Zr s y st e m i n t h e li q ui d st at e. E x c e pt t h e  m o d el s of  Ni 7 5 Zr 2 5 a n d
Zr  m elt s, t h e  Arr h e ni u s fit i s p erf or m e d i n t h e t e m p er at ur e r a n g e b et w e e n 2 2 0 0 a n d 1 4 0 0 K. F or t h e  m o d el s of  Ni 7 5 Zr 2 5 a n d  Zr  m elt s, t h e  Arr h e ni u s fit
i s p erf or m e d i n t h e t e m p er at ur e r a n g e s of 2 2 0 0 – 1 7 0 0 K a n d 2 2 0 0 – 1 6 0 0 K, r e s p e cti v el y.

M o d el S elf- di ff u si o n  Ni S elf- di ff u si o n  Zr C oll e cti v e di ff u si o n

E A [ e V] D 0 [ 1 0− 7 m 2 s − 1 ] E A [ e V] D 0 [ 1 0− 7 m 2 s − 1 ] E A [ e V] D 0 [ 1 0− 7 m 2 s − 1 ]

P ur e  Ni 0. 4 5 0. 7 3 — — — —

Ni 8 7. 5 Zr 1 2. 5 0. 5 6 1. 2 4 0. 6 9 1. 5 8 0. 6 0 0. 9 4

Ni 7 5 Zr 2 5 0. 6 3 1. 4 1 0. 7 7 1. 7 2 0. 6 5 0. 8 3

Ni 6 2. 5 Zr 3 7. 5 0. 6 3 1. 4 9 0. 6 7 1. 2 6 0. 6 3 0. 8 4

Ni 5 0 Zr 5 0 0. 5 5 1. 0 9 0. 5 6 0. 8 6 0. 5 4 0. 6 0

Ni 3 7. 5 Zr 6 2. 5 0. 5 0 0. 8 8 0. 5 0 0. 7 5 0. 4 9 0. 5 9

Ni 2 5 Zr 7 5 0. 4 7 0. 8 7 0. 4 8 0. 7 2 0. 4 6 0. 6 5

Ni 1 2. 5 Zr 8 7. 5 0. 4 6 0. 8 5 0. 4 9 0. 7 6 0. 4 5 0. 7 2

P ur e  Zr — — 0. 4 9 0. 7 7 — —

I n Fi g ur e 3 a – c,  w e s h o w, r e s p e cti v el y, t h e c o m p o siti o n d e p e n-
d e n c e of D Ni , D Zr , a n d L̃ c c i n t h e  m o d el s of  Ni – Zr  m elt s e v al u at e d
at 2 2 0 0, 2 0 0 0, 1 7 0 0, 1 4 0 0, a n d 1 2 0 0  K u si n g t h e  Arr h e ni u s p ar a m-
et er s o bt ai n e d fr o m o ur si m ul ati o n d at a ( s e e  Ta bl e 2).  A s et of
t w o  Arr h e ni u s p ar a m et er s all o w s u s t o c o n v e ni e ntl y e n c o d e t h e
t e m p er at ur e d e p e n d e n c e of a di ff u si o n c o e ffi ci e nt.  A s a r e s ult,
o n e c a n u s e t h e  Arr h e ni u s p ar a m et er s i n  Ta bl e 2 f or s m o ot hi n g
a n d i nt er p ol ati o n of t h e di s cr et e c al c ul ati o n d at a  wit hi n t h e t e m-
p er at ur e r a n g e of fitti n g ( s e e t h e o p e n s y m b ol s i n Fi g ur e 3 a – c).

M or e o v er, t h e  Arr h e ni u s p ar a m et er s all o w f or e xtr a p ol ati o n of
t h e c al c ul ati o n d at a fr o m t h e t e m p er at ur e r a n g e of fitti n g d o w n
t o l o w er t e m p er at ur e s ( s e e t h e cr o s s e d s y m b ol s i n Fi g ur e 3 a – c).
T h e e xtr a p ol at e d d at a al o n g  wit h t h e a ct u al c al c ul at e d d at a ( s e e
t h e gr e y- fill e d s y m b ol s i n Fi g ur e 3 a – c) ar e u s e d t o c o n v e ni e ntl y
vi s u ali z e t h e i n fl u e n c e of c o m p o siti o n o n t h e d y n a mi c al sl o wi n g
d o w n u p o n  m elt u n d er c o oli n g (it s h o ul d b e r e c all e d t h at u n d er-
c o oli n g of t h e  m o d el s of  Ni 7 5 Zr 2 5 a n d  Zr  m elt s i s i nt err u pt e d b y
cr y st alli z ati o n at 1 6 5 0 a n d 1 5 5 0  K, r e s p e cti v el y).

A d v. T h e or y Si m ul. 2 0 1 8 , 1 , 1 8 0 0 1 0 9 C 2 0 1 8  WI L E Y- V C H  V erl a g  G m b H  &  C o. K G a A,  W ei n h ei m1 8 0 0 1 0 9 ( 7 of 1 4)
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Fi g ur e 2. Arr h e ni u s pl ot of t h e ki n eti c p art of t h e i nt er di ff u si o n c o e ffi ci e nt,
L̃ c c , i n t h e  m o d el s of  Ni6 2. 5 Zr 3 7. 5 ( d o w n w ar d-f a ci n g tri a n gl e s),  Ni 5 0 Zr 5 0

( di a m o n d s), a n d  Ni 3 7. 5 Zr 6 2. 5 ( u p w ar d-f a ci n g tri a n gl e s)  m elt s. T h e li n e s
di s pl a y t h e fit s of t h e si m ul ati o n d at a.

I n Fi g ur e 3 a, b,  w e al s o s h o w t h e r el e v a nt e x p eri m e nt al d at a
o n t h e c o m p o siti o n d e p e n d e n c e of D Ni a n d D Zr i n  Ni – Zr  m elt s,
r e s p e cti v el y.  T h e s oli d s q u ar e s a n d di a m o n d s i n Fi g ur e 3 a s h o w
t h e i nt er p ol ati o n of e x p eri m e nt al d at a t o 1 7 0 0 a n d 1 4 0 0  K, r e s p e c-
ti v el y, a c c or di n g t o t h e  Arr h e ni u s fit s pr e s e nt e d i n r ef s. [ 5, 4 6 – 4 8].
M e a n w hil e, t h e s oli d di a m o n d s i n Fi g ur e 3 b s h o w t h e e x p eri-
m e nt al d at a at 1 3 8 8  K pr e s e nt e d i n r ef s. [ 1 0, 1 1]. It c a n b e s e e n
i n Fi g ur e 3 a, b t h at i n b ot h c a s e s a cl o s e a gr e e m e nt  wit h t h e e x-
p eri m e nt al d at a i s o b s er v e d.  O v er all,  w e pr e di ct si mil ar  mi ni m a
i n t h e c o m p o siti o n d e p e n d e n ci e s of D Ni , D Zr , a n d L̃ c c l o c at e d i n
t h e r e gi o n of 0.6 2 5 < c Ni < 0 .7 5. F urt h er m or e, a f airl y fl at  m a xi-
m u m c a n b e n oti c e d i n t h e c o m p o siti o n d e p e n d e n c e of D Zr i n t h e
vi ci nit y of c Ni ≈ 0 .1 2 5.  A n ot h er c o m m o n tr e n d a m o n g D Ni , D Zr ,
a n d L̃ c c i s t h at t h e l ar g er v al u e s of t h e di ff u si o n c o e ffi ci e nt s ar e
o b s er v e d i n t h e  m o d el s of  Zr-ri c h  m elt s c o m p ar e d t o t h e  m o d el s
of  Ni-ri c h  m elt s.  H o w e v er, it s h o ul d b e n ot e d t h at t hi s a s y m m et-
ri c al b e h a vi or i s l e s s pr o n o u n c e d i n t h e c a s e of D Ni . I n a d diti o n,
w e p oi nt o ut t h at t h e  m o st n ot a bl e d y n a mi c al sl o wi n g d o w n u p o n
u n d er c o oli n g i s o b s er v e d f or t h e  m o d el of  Ni 6 2. 5 Zr 3 7. 5 m elt i n t h e
c a s e of  w hi c h t h e r ati o s of t h e e xtr a p ol at e d a n d a ct u al c al c ul at e d
v al u e s of D Ni , D Zr , a n d L̃ c c at 1 2 0 0  K r e a c h, r e s p e cti v el y, 1. 7, 1. 9,
a n d 1. 5 ( s e e al s o Fi g ur e s 1 b – d a n d 2).

I n Fi g ur e 4 ,  w e s h o w t h e c o m p o siti o n d e p e n d e n c e of t h e r ati o
of t h e s elf- di ff u si o n c o e ffi ci e nt s D Ni / D Zr i n t h e  m o d el s of  Ni –
Zr  m elt s e v al u at e d at 2 2 0 0, 2 0 0 0, 1 7 0 0, 1 4 0 0, a n d 1 2 0 0  K u si n g
v al u e s of D Ni a n d D Zr r e p ort e d i n Fi g ur e 3 a, b, r e s p e cti v el y.  A s
it c a n b e s e e n i n Fi g ur e 4, o ur si m ul ati o n r e s ult s r e v e al a c o n-
si d er a bl e d e c o u pli n g of t h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d
Zr i n t h e  m o d el s of  Ni-ri c h  Ni – Zr  m elt s. I n p arti c ul ar, it i s o b-
s er v e d t h at t h e c al c ul at e d r ati o D Ni / D Zr c a n e x c e e d a f a ct or of
t hr e e u p o n  m elt u n d er c o oli n g, r e a c hi n g a b o ut 3. 3 f or t h e  m o d el
of  Ni 8 7. 5 Zr 1 2. 5 m elt at 1 2 0 0  K j u st b ef or e t h e o n s et of it s cr y st al-

li z ati o n at 1 1 5 0  K.  Pr o b a bl y, a s it  m a y f oll o w fr o m t h e d at a i n
Fi g ur e 4 e xtr a p ol at e d d o w n t o 1 2 0 0  K, e v e n str o n g er d e c o u pli n g
w o ul d b e o b s er v e d f or t h e  m o d el of  Ni 7 5 Zr 2 5 m elt if it s u n d er-
c o oli n g  w er e c arri e d o ut  wit h a hi g h er c o oli n g r at e, s u ffi ci e nt t o
a v oi d cr y st alli z ati o n b et w e e n 1 6 5 0 a n d 1 2 0 0  K.  T h e s e fi n di n g s
ar e i n b ot h q u alit ati v e a n d q u a ntit ati v e a gr e e m e nt  wit h a n a s s e s s-
m e nt of t h e r ati o D Ni / D Zr i n  Ni3 6 Zr 6 4 a n d  Ni 6 4 Zr 3 6 m elt s  m a d e
i n r ef s. [ 1 0, 1 1] o n t h e b a si s of e x p eri m e nt al d at a ( s e e, f or ill u s-
tr ati o n, t h e s oli d di a m o n d s  wit h err or b ar s i n Fi g ur e 4).[ 5, 1 0, 1 1]

Alt h o u g h t h e pr o n o u n c e d c h e mi c al s h ort-r a n g e or d er i n  Ni – Zr
m elt s s h o ul d a p p ar e ntl y s u p pr e s s di ff u si o n d e c o u pli n g, it  w a s
ar g u e d i n r ef s. [ 1 0, 1 1] t h at  wit h a n i n cr e a si n g a m o u nt of  Ni c o n-
t e nt i n t h e  m elt s, t h e fr a cti o n of str o n gl y i nt er a cti n g  Ni – Zr p air s
i s s at ur at e d a b o v e a c ert ai n c o m p o siti o n d u e t o t h e li mit e d n u m-
b er of  Zr at o m s a n d o nl y t h e fr a cti o n of  Ni – Ni p air s c a n i n cr e a s e
f urt h er.  T h er ef or e, t h e s at ur at e d fr a cti o n of h et er o g e n e o u s  Ni – Zr
p air s l e a d s t o a n i n cr e a s e d a m o u nt of e x c e s s l e s s- str o n gl y c o u-
pl e d  Ni at o m s  w hi c h, a s a r e s ult, e x hi bit a n e n h a n c e d di ff u si o n
m o bilit y i n  Ni-ri c h  m elt s. [ 1 0, 1 1]

O v er all, it c a n b e o b s er v e d i n Fi g ur e 4 t h at t h e c al c ul at e d r ati o
D Ni / D Zr i s al w a y s gr e at er t h a n o n e  wit hi n t h e c o m p o siti o n a n d
t e m p er at ur e r a n g e s c o n si d er e d i n t h e pr e s e nt st u d y.  A s it  w a s
p oi nt e d o ut i n r ef. [ 1 0], s u c h b e h a vi or  m a y i n di c at e t h at t h e b o n d s
of  Zr at o m s  wit h t h e n e ar e st n ei g h b or s ar e o n a v er a g e str o n g er
t h a n t h e b o n d s of  Ni at o m s.  A s a r e s ult,  m or e t h er m al e n er g y
i s n e e d e d t o br e a k t h e b o n d s of  m or e r e a cti v e  Zr at o m s.  C o n s e-
q u e ntl y, a s t e m p er at ur e g o e s d o w n t h e a v ail a bl e t h er m al e n er g y
b e c o m e s s m all er a n d  m oti o n of  m or e r e a cti v e  Zr at o m s s h o ul d
b e sl o w e d d o w n b y e n er g y l a n d s c a p e  m or e r a pi dl y t h a n  m oti o n
of  Ni at o m s.  T h u s, t h e str o n g er d e c o u pli n g of t h e s elf- di ff u si o n
c o e ffi ci e nt s of  Ni a n d  Zr at l o w er t e m p er at ur e s o b s er v e d i n Fi g-
ur e 4 c a n b e attri b ut e d t o t h e tr a n siti o n fr o m si m pl e li q ui d-li k e
m oti o n t o di ff u si o n b e h a vi or a p pr o a c hi n g t h e e n er g y l a n d s c a p e
c o ntr oll e d r e gi m e. [ 1 0, 4 9]

I n t hi s c o nt e xt, it i s al s o i m p ort a nt t o n ot e a si g ni fi c a nt
c o m p o n e nt d e c o u pli n g o b s er v e d i n  Zr- b a s e d  m ulti c o m p o n e nt
Zr 4 6. 7 5 Ti 8. 2 5 C u 7. 5 Ni 1 0 B e 2 7. 5 gl a s s-f or mi n g  m elt  wit h t h e r ati o
D Ni / D Zr ≈ 4  n e ar it s li q ui d u s t e m p er at ur e of 1 0 5 0  K. [ 8] I n f a ct, a s
it  w a s p oi nt e d o ut i n r ef. [ 1 0], t h e r ati o D Ni / D Zr d e cr e a s e s t o a f a c-
t or of l e s s t h a n t w o  w h e n t h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d
Zr i n  Zr 4 6. 7 5 Ti 8. 2 5 C u 7. 5 Ni 1 0 B e 2 7. 5 gl a s s-f or mi n g  m elt ar e e xtr a p o-
l at e d a b o v e 1 2 0 0  K. I n t er m s of t h e e n er g y l a n d s c a p e, t hi s c a n
b e e x pl ai n e d b y si g ni fi c a nt d e c a y of t h e di ff u si o n b arri er s f or  Zr
at o m s at hi g h er t e m p er at ur e s. [ 1 0] T h e  m o st r e m ar k a bl e i s t h at t h e
e xtr a p ol at e d r ati o i s i n cl o s e a gr e e m e nt  wit h t h e d e c o u pli n g f a c-
t or of t h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d  Zr  w hi c h  w e o b s er v e
i n o ur  m o d el s of  Zr-ri c h  Ni – Zr  m elt s at 1 2 0 0  K ( s e e Fi g ur e 4). It
c a n al s o b e s e e n i n Fi g ur e 4 t h at t h e s m all e st d e c o u pli n g of t h e
s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d  Zr ( 1 .2 D Ni / D Zr 1 .3) i s
o b s er v e d i n o ur si m ul ati o n s i n t h e c o m p o siti o n r a n g e of 0 .3 7 5
c Ni 0 .5. F urt h er m or e, it i s i nt er e sti n g t o n ot e t h at i n si d e t hi s
c o m p o siti o n r a n g e t h e r ati o D Ni / D Zr i s pr a cti c all y i n d e p e n d e nt
of t e m p er at ur e  wit hi n t h e c o n si d er e d t e m p er at ur e r a n g e.  H e n c e,
o n e  m a y c o n cl u d e t h at t h e e ff e ct of t h e e n er g y l a n d s c a p e o n t h e
d e c o u pli n g of t h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d  Zr s h o ul d
b e s m all e st f or  Ni – Zr  m elt s i n t hi s c o m p o siti o n r a n g e.

I n Fi g ur e 5 a,  w e s h o w t h e c o m p o siti o n d e p e n d e n c e of
t h e c orr e cti o n f a ct or i n t h e  D ar k e n – M a n ni n g e q u ati o n,
S = L̃ c c / (c Zr D Ni + c Ni D Zr ), e v al u at e d f or t h e  m o d el s of  Ni – Zr

A d v. T h e or y Si m ul. 2 0 1 8 , 1 , 1 8 0 0 1 0 9 C 2 0 1 8  WI L E Y- V C H  V erl a g  G m b H  &  C o. K G a A,  W ei n h ei m1 8 0 0 1 0 9 ( 8 of 1 4)
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( a) ( b)

( c)

Fi g ur e 3. C o m p o siti o n d e p e n d e n c e of t h e s elf- di ff u si o n c o e ffi ci e nt s of a)  Ni, D Ni , a n d b)  Zr, D Zr , a s  w ell a s of c) t h e ki n eti c p art of t h e i nt er di ff u si o n
c o e ffi ci e nt, L̃ c c , e v al u at e d at t e m p er at ur e s 2 2 0 0 K ( o p e n u p w ar d-f a ci n g tri a n gl e s), 2 0 0 0 K ( o p e n cir cl e s), 1 7 0 0 K ( o p e n s q u ar e s), 1 4 0 0 K ( o p e n di a m o n d s),
a n d 1 2 0 0 K ( cr o s s e d d o w n w ar d-f a ci n g tri a n gl e s) b y  m a ki n g u s e of t h e  Arr h e ni u s p ar a m et er s gi v e n i n Ta bl e 2. T h e cr o s s e d di a m o n d a n d t h e cr o s s e d
d o w n w ar d-f a ci n g tri a n gl e s i n di c at e t h e d at a e xtr a p ol at e d d o w n t o 1 4 0 0 K a n d 1 2 0 0 K, r e s p e cti v el y. T h e gr e y- fill e d, d o w n w ar d-f a ci n g tri a n gl e s s h o w t h e
a ct u al c al c ul at e d v al u e s of a) D Ni , b) D Zr , a n d c) L̃ c c at 1 2 0 0 K. T h e li n e s s er v e a s a g ui d e f or t h e e y e. a) T h e s oli d s q u ar e s a n d di a m o n d s s h o w t h e
i nt er p ol ati o n of e x p eri m e nt al d at a t o 1 7 0 0 K a n d 1 4 0 0 K, r e s p e cti v el y, a c c or di n g t o t h e  Arr h e ni u s fit s.[ 5, 4 6 – 4 8] b) T h e s oli d di a m o n d s s h o w t h e e x p eri m e nt al
d at a f or  Ni 3 6 Zr 6 4 a n d  Ni 6 4 Zr 3 6 m elt s at 1 3 8 8 K. [ 1 0, 1 1]

m elt s at t h e s a m e t e m p er at ur e s u si n g v al u e s of D Ni , D Zr , a n d L̃ c c

r e p ort e d i n Fi g ur e 3 a – c, r e s p e cti v el y.  At hi g h t e m p er at ur e s (i. e.,
i n t h e n or m al li q ui d st at e) t h e c o m p o siti o n d e p e n d e n c e of S h a s
si mil ar tr e n d s t o t h o s e  w hi c h  w er e pr e vi o u sl y o b s er v e d f or  Ni – Al
m elt s. [ 2 0, 2 6, 3 5, 5 0 – 5 2] I n p arti c ul ar, a s i n t h e c a s e of  Ni – Al  m elt s it
c a n b e s e e n i n Fi g ur e 5 a t h at i n t h e n or m al li q ui d st at e of t h e
m o d el s of  Ni – Zr  m elt s  w e h a v e S < 1 f or all c o m p o siti o n s a s
it c a n b e e x p e ct e d f or bi n ar y li q ui d all o y s  wit h  mi xi n g t e n d e n c y
i n a c c or d a n c e  wit h o ur di s c u s si o n i n t h e pr e vi o u s s e cti o n.
F urt h er m or e, it i s g e n er all y e x p e ct e d t h at c oll e cti v e di ff u si o n
ki n eti c s i n n o n- d e mi xi n g bi n ar y li q ui d all o y s s h o ul d sl o w d o w n

u p o n i n cr e a si n g t h e c o n c e ntr ati o n of t h e  mi n orit y s p e ci e s
t o w ar d t h e e q ui- at o mi c c o m p o siti o n.[ 2 0, 2 6, 5 0 – 5 2] I n a c c or d a n c e
wit h t hi s s u g g e sti o n, a  mi ni m u m i n t h e c o m p o siti o n d e p e n-
d e n c e of S i n Fi g ur e 5 a i s l o c at e d s o m e w h er e i n t h e r a n g e of
0 .5 c Ni 0 .6 2 5.  T h e  mi ni m u m v al u e of t h e c orr e cti o n f a ct or
S f or t h e  m o d el s of  Ni – Zr  m elt s i n t h e n or m al li q ui d st at e i s
pr a cti c all y i n d e p e n d e nt of t e m p er at ur e a n d it c a n b e e sti m at e d
a s a b o ut S mi n ≈ 0 .6 7.  A g ai n,  w e s h o ul d n ot e t h at t h e p o siti o n
a n d d e pt h of t h e  mi ni m a i n t h e c o m p o siti o n d e p e n d e n ci e s of S
f or t h e  m o d el s of  Ni – Zr a n d  Ni – Al  m elt s i n t h e n or m al li q ui d
st at e r e v e al v er y si mil ar v al u e s ( s e e al s o r ef s. [ 2 0, 2 6]).
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Fi g ur e 4. C o m p o siti o n d e p e n d e n c e of t h e r ati o of t h e s elf- di ff u si o n c o ef-
fi ci e nt s of  Ni a n d  Zr, D Ni / D Zr , e v al u at e d at t e m p er at ur e s 2 2 0 0 K ( o p e n
u p w ar d-f a ci n g tri a n gl e s), 2 0 0 0 K ( o p e n cir cl e s), 1 7 0 0 K ( o p e n s q u ar e s),
1 4 0 0 K ( o p e n di a m o n d s), a n d 1 2 0 0 K ( cr o s s e d d o w n w ar d-f a ci n g tri a n-
gl e s) b y  m a ki n g u s e of t h e  Arr h e ni u s p ar a m et er s gi v e n i n Ta bl e 2. T h e
cr o s s e d di a m o n d a n d t h e cr o s s e d d o w n w ar d-f a ci n g tri a n gl e s i n di c at e t h e
d at a e xtr a p ol at e d d o w n t o 1 4 0 0 a n d 1 2 0 0 K, r e s p e cti v el y. T h e gr e y- fill e d,
d o w n w ar d-f a ci n g tri a n gl e s s h o w t h e a ct u al c al c ul at e d v al u e s of D Ni / D Zr

at 1 2 0 0 K. T h e li n e s s er v e a s a g ui d e f or t h e e y e. T h e s oli d di a m o n d s
wit h err or b ar s s h o w a n a s s e s s m e nt of D Ni / D Zr i n  Ni3 6 Zr 6 4 a n d  Ni 6 4 Zr 3 6

m elt s at 1 3 8 8 K  w hi c h i s  m a d e i n r ef s. [ 1 0, 1 1] o n t h e b a si s of e x p eri m e nt al
d at a. [ 5, 1 0, 1 1]

O v er all, a s i n t h e c a s e of t h e  m o d el s of  Ni – Al  m elt s, [ 2 0] it i s o b-
s er v e d t h at t h e c o m p o siti o n d e p e n d e n c e of t h e c orr e cti o n f a ct or
f or t h e  m o d el s of  Ni – Zr  m elt s i n t h e n or m al li q ui d st at e h a s a
s h a p e  w hi c h i s si mil ar t o t h e c o m p o siti o n d e p e n d e n c e of t h eir
e nt h al p y of  mi xi n g. I n Fi g ur e 6 ,  w e s h o w t h e e nt h al p y of  mi xi n g
c al c ul at e d p er at o m, h m = h − c Ni h ∗

Ni − c Zr h ∗
Zr ( w h er e h d e n ot e s

t h e t ot al e nt h al p y of t h e  m o d el s of  Ni – Zr  m elt s,  w hil e h ∗
Ni a n d h ∗

Zr

d e n ot e t h e e nt h al pi e s of t h e  m o d el s of p ur e  Ni a n d  Zr  m elt s), f or
t h e  m o d el s of  Ni – Zr  m elt s al o n g  wit h t h e a s s e s s m e nt of e nt h al p y
of  mi xi n g of  Ni – Zr  m elt s o n t h e b a si s of e x p eri m e nt al t h er m o-
d y n a mi c d at a. [ 5 3] It c a n b e s e e n i n Fi g ur e 6 t h at t h e e nt h al p y of
mi xi n g of t h e  m o d el s of  Ni – Zr  m elt s i s pr a cti c all y t e m p er at ur e-
i n d e p e n d e nt i n t h e t e m p er at ur e r a n g e b et w e e n 2 2 0 0 a n d 1 6 0 0
K.  W e s h o ul d n ot e t h at, b e c a u s e of cr y st alli z ati o n of t h e  m o d el of
p ur e  Zr  m elt at 1 5 5 0  K, o ur si m ul ati o n d at a f or h m ar e o nl y a v ail-
a bl e d o w n t o 1 6 0 0  K.  Al s o, it c a n b e s e e n i n Fi g ur e 6 t h at o n e p oi nt
(c Ni = 0 .7 5) i s  mi s s e d at 1 6 0 0  K d u e t o cr y st alli z ati o n of t h e  m o d el
of  Ni 7 5 Zr 2 5 m elt at 1 6 5 0  K.  Alt o g et h er, o ur si m ul ati o n d at a f or
h m (c Ni ) ar e i n g o o d a gr e e m e nt  wit h t h e e x p eri m e nt al r e s ult s, e s-
p e ci all y o n t h e  Ni-ri c h si d e.  Alt h o u g h, s o m e d e vi ati o n s b et w e e n
t h e e x p eri m e nt al a n d si m ul ati o n d at a o n t h e  Zr-ri c h si d e a s  w ell
a s a s o m e w h at  m or e pr o n o u n c e d di s pl a c e m e nt of t h e  mi ni m u m
i n t h e si m ul ati o n c ur v e fr o m e q ui- at o mi c c o m p o siti o n t o w ar d  Ni-
ri c h si d e c a n b e n ot e d.

I n Fi g ur e 5 b, c,  w e s h o w t h e c o m p o siti o n d e p e n d e n c e
of S 0 a n d W 1 2 / k B T , r e s p e cti v el y.  A c c or di n g t o E q u ati o n
( 1 1), S 0 = [ 1 + c Ni c Zr (m Ni D Ni − m Zr D Zr )2 / m 2 D Ni D Zr ]− 1 a n d
W 1 2 / k B T = (S − S 0 )/ S 0 o u g ht t o c h ar a ct eri z e t h e f a ct ori z ati o n
of S i nt o t h e c o ntri b uti o n s d u e t o si n gl e- p arti cl e ki n eti c e ff e ct s
a n d a c oll e cti v e e n er g y g e n er ati o n – di s si p ati o n e ff e ct.  O n e of
t h e i m p ort a nt di ff er e n c e s b et w e e n t h e  m o d el s of  Ni – Zr a n d
Ni – Al  m elt s i s t h at i n t h e  m o d el s of  Ni – Zr  m elt s t h e li g ht er
Ni s p e ci e s ( m Ni / m Zr ≈ 5 8 .6 9 / 9 1 .2 2 ≈ 0 .6 4) p o s s e s s t h e l ar g er
s elf- di ff u si o n c o e ffi ci e nt  w hil e i n t h e  m o d el s of  Ni – Al  m elt s t h e
h e a vi er  Ni s p e ci e s ( m Ni / m Al ≈ 5 8 .6 9 / 2 6 .9 8 ≈ 2 .1 8) p o s s e s s t h e
l ar g er s elf- di ff u si o n c o e ffi ci e nt.  T h er ef or e, i n t h e n or m al li q ui d
st at e of t h e  m o d el s of  Ni – Zr  m elt s, t h e si n gl e- p arti cl e ki n eti c
e ff e ct s d u e t o a n i n cr e a s e of t h e r ati o D Ni / D Zr a b o v e u nit y (it
v ari e s b et w e e n 1. 2 a n d 1. 8 at hi g h t e m p er at ur e s) ar e e ff e cti v el y
d a m p e d b y t h e  m a s s r ati o m Ni / m Zr ≈ 0 .6 4 r e s ulti n g i n S 0 ≈ 1
o v er t h e  w h ol e c o m p o siti o n r a n g e.  T hi s i s i n c o ntr a st t o o ur
pr e vi o u s r e s ult s o bt ai n e d f or t h e  m o d el s of  Ni – Al  m elt s, [ 2 6] f or
w hi c h t h e si n gl e- p arti cl e ki n eti c e ff e ct s d u e t o a n i n cr e a s e of
t h e r ati o D Ni / D Al a b o v e u nit y ar e f urt h er a m pli fi e d b y t h e  m a s s
r ati o m Ni / m Al ≈ 2 .1 8, r e s ulti n g i n a c o n si d er a bl e r e d u cti o n of
S 0 b el o w u nit y at all c o m p o siti o n s. F or i n st a n c e, i n t h e n or m al
li q ui d st at e of t h e  m o d el s of  Ni – Al  m elt s S 0 r e a c h e s it s  mi ni-
m u m v al u e of 0. 8 5 i n t h e vi ci nit y of e q ui- at o mi c c o m p o siti o n.
N o n et h el e s s, a c o n si d er a bl e r e d u cti o n of S 0 b el o w u nit y i s al s o
o b s er v e d i n Fi g ur e 5 b f or t h e  m o d el s of  Ni-ri c h  Ni – Zr  m elt s
u p o n u n d er c o oli n g. I n p arti c ul ar, t h e r ati o D Ni / D Zr r e a c h e s
a b o ut 3. 3 f or t h e  m o d el of  Ni 8 7. 5 Zr 1 2. 5 m elt at 1 2 0 0  K.  T hi s i s
s u ffi ci e nt t o o v er c o m e t h e d a m pi n g e ff e ct of t h e  m a s s r ati o
m Ni / m Zr ≈ 0 .6 4 a n d t o pr o d u c e a si z a bl e dr o p of S 0 d o w n t o 0. 9 2.

T h u s, i n c o ntr a st t o t h e  m o d el s of  Ni – Al  m elt s f or  w hi c h t h e
c o ntri b uti o n s i nt o S d u e t o S 0 a n d ( 1 + W 1 2 / k B T ) ar e f o u n d t o
b e f airl y si mil ar, [ 2 6] i n t h e  m o d el s of  Ni – Zr  m elt s t h e c o m p o si-
ti o n d e p e n d e n c e of S b a si c all y f oll o w s t h e c o m p o siti o n d e p e n-
d e n c e of W 1 2 / k B T ( s hift e d u p b y o n e).  T h e e ff e ct of S 0 b e c o m e s
n ot a bl e o nl y i n t h e  m o d el s of  Ni-ri c h  Ni – Zr  m elt s u p o n u n d er-
c o oli n g.  T h e  m ai n di ff er e n c e c o n c er ni n g b e h a vi or of W 1 2 / k B T
w h e n c o m p ari n g t h e  m o d el s of  Ni – Zr a n d  Ni – Al  m elt s, h o w e v er,
li e s i n t h e si g n of W 1 2 / k B T t h at b e c o m e s p o siti v e i n t h e  m o d el s
of b ot h  Ni-ri c h a n d  Zr-ri c h  Ni – Zr  m elt s u p o n u n d er c o oli n g.  T h e
str o n g e st i n cr e a s e of W 1 2 / k B T u p o n u n d er c o oli n g i s o b s er v e d i n
t h e  m o d el s of  Ni-ri c h  Ni – Zr  m elt s ( s e e Fi g ur e 5 c). I n p arti c u-
l ar, W 1 2 / k B T r e a c h e s 0. 4 8 a n d 0. 0 8, r e s p e cti v el y, i n t h e  m o d el s
of  Ni 8 7. 5 Zr 1 2. 5 a n d  Ni 1 2. 5 Zr 8 7. 5 m elt s at 1 2 0 0  K j u st b ef or e t h e o n-
s et of t h eir cr y st alli z ati o n at 1 1 5 0  K. S u c h b e h a vi or of W 1 2 / k B T
s h o w s s o m e c orr el ati o n  wit h t h e b e h a vi or of t h e r ati o D Ni / D Zr ,
a n d i s a  m a nif e st ati o n of e m er gi n g h et er o g e n eit y i n at o mi c d y-
n a mi c s of  m elt d u e t o e nt eri n g t h e e n er g y l a n d s c a p e c o ntr oll e d
r e gi m e u p o n u n d er c o oli n g. [ 1 0, 4 9] H o w e v er, a si g ni fi c a nt d e c o u-
pli n g of t h e s elf- di ff u si o n c o e ffi ci e nt s of  Ni a n d  Zr i n t h e  m o d el s
of  Ni-ri c h  Ni – Zr  m elt s u p o n u n d er c o oli n g r e s ult s i n a d e cr e a s e
of f a ct or S 0 w hi c h a c c o u nt s f or t h e c o ntri b uti o n i nt o S d u e t o
si n gl e- p arti cl e ki n eti c e ff e ct s.  M e a n w hil e, t h e c o ntri b uti o n i nt o S
d u e t o a c oll e cti v e e n er g y g e n er ati o n – di s si p ati o n e ff e ct a c c o u nt e d
b y W 1 2 / k B T i s a m pli fi e d u p o n tr a n siti o n t o di ff u si o n b e h a vi or
a p pr o a c hi n g t h e e n er g y l a n d s c a p e c o ntr oll e d r e gi m e.  T h e v ari a-
ti o n of t h e l att er c o ntri b uti o n si g ni fi c a ntl y d o mi n at e s t h e v ari a-
ti o n of t h e f or m er c o ntri b uti o n r e s ulti n g i n c o n si d er a bl e i n cr e a s e
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( a) ( b)

( c)

Fi g ur e 5. C o m p o siti o n d e p e n d e n c e of a) t h e c orr e cti o n f a ct or, S = L̃ c c / (c Zr D Ni + c Ni D Zr ), a s  w ell a s it s p art s d u e t o b) si n gl e- p arti cl e ki n eti c s, S 0 =
[ 1 + c Ni c Zr (m Ni D Ni − m Zr D Zr )2 / m 2 D Ni D Zr ]− 1 , a n d c) a c oll e cti v e e n er g y g e n er ati o n – di s si p ati o n e ff e ct, W 1 2 / k B T = ( S − S 0 )/ S 0 , ( s e e m ai n t e xt f or
d et ail s) e v al u at e d at t e m p er at ur e s 2 2 0 0 K ( o p e n u p w ar d-f a ci n g tri a n gl e s), 2 0 0 0 K ( o p e n cir cl e s), 1 7 0 0 K ( o p e n s q u ar e s), 1 4 0 0 K ( o p e n di a m o n d s),
a n d 1 2 0 0 K ( cr o s s e d d o w n w ar d-f a ci n g tri a n gl e s) b y  m a ki n g u s e of t h e  Arr h e ni u s p ar a m et er s gi v e n i n Ta bl e 2. T h e cr o s s e d di a m o n d a n d t h e cr o s s e d
d o w n w ar d-f a ci n g tri a n gl e s i n di c at e t h e d at a e xtr a p ol at e d d o w n t o 1 4 0 0 a n d 1 2 0 0 K, r e s p e cti v el y. T h e gr e y- fill e d, d o w n w ar d-f a ci n g tri a n gl e s s h o w t h e
a ct u al c al c ul at e d v al u e s of a) S , b) S 0 , a n d c) W 1 2 / k B T at 1 2 0 0 K. T h e li n e s s er v e a s a g ui d e f or t h e e y e.

i n S a b o v e u nit y f or t h e  m o d el s of  Ni-ri c h  Ni – Zr  m elt s u p o n
u n d er c o oli n g.

I n Fi g ur e 7 ,  w e s h o w t h e c o m p o siti o n d e p e n d e n c e of t h e di-
m e n si o nl e s s f a ct or σ 1 2 ,  w hi c h d e fi n e s t h e i niti al si g n of P 1 2 (t) =
V R 1 2 (t) J c ( 0) / 3 N c 1 c 2 a s t h e c orr el ati o n b et w e e n R 1 2 (t) a n d
J c ( 0) st art s t o d e v el o p  wit h ti m e ( s e e E q u ati o n s ( 1 7) –( 2 3)), at t h e
t hr e e di ff er e nt t e m p er at ur e s of 2 2 0 0, 1 7 0 0, a n d 1 2 0 0  K ( o n e p oi nt
f or c Ni = 0 .7 5 i s  mi s s e d at 1 2 0 0  K d u e t o cr y st alli z ati o n of t h e
m o d el of  Ni 7 5 Zr 2 5 m elt at 1 6 5 0  K).  A s it c a n b e e x p e ct e d f or bi n ar y
mi xi n g  m elt s e x hi biti n g c h e mi c al or d eri n g, t h e f a ct or σ 1 2 i s f o u n d
t o b e n e g ati v e f or t h e  m o d el s of  Ni – Zr  m elt s i n b ot h n or m al a n d

u n d er c o ol e d li q ui d st at e s o v er t h e  w h ol e c o m p o siti o n r a n g e.  A s
it c a n b e s e e n i n Fi g ur e 7, t h e c o m p o siti o n d e p e n d e n c e of σ 1 2 i s
f airl y si mil ar t o t h e c o m p o siti o n d e p e n d e n c e of W 1 2 / k B T i n t h e
n or m al li q ui d st at e, al s o r e v e ali n g t h e  mi ni m u m v al u e l o c at e d i n
t h e r a n g e of 0.5 c Ni 0 .6 2 5.  H o w e v er, i n c o ntr a st t o t h e c o m-
p o siti o n d e p e n d e n c e of W 1 2 / k B T , t h e c o m p o siti o n d e p e n d e n c e
of σ 1 2 c h a n g e s o nl y sli g htl y u p o n  m elt u n d er c o oli n g, r et ai ni n g
n e g ati v e v al u e s o v er t h e  w h ol e c o m p o siti o n r a n g e.

T h u s, t h e p o siti v e v al u e s of W 1 2 / k B T o b s er v e d i n t h e  m o d-
el s of  Ni 8 7. 5 Zr 1 2. 5 a n d  Ni 1 2. 5 Zr 8 7. 5 m elt s at 1 2 0 0  K r e fl e ct c h a n g e s
i n at o mi c d y n a mi c s of t h e  m o d el s pr e c e di n g t h e o n s et of t h eir
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Fi g ur e 6. E nt h al p y of  mi xi n g of t h e  m o d el s of  Ni – Zr  m elt s e v al u at e d a s
a f u n cti o n of  Ni c o m p o siti o n, h m (c Ni ), at t e m p er at ur e s 2 2 0 0 K ( o p e n
u p w ar d-f a ci n g tri a n gl e s), 2 0 0 0 K ( o p e n s q u ar e s), 1 8 0 0 K ( o p e n di a-
m o n d s), a n d 1 6 0 0 K ( o p e n d o w n w ar d-f a ci n g tri a n gl e s). T h e s oli d li n e
dr a w n t hr o u g h t h e si m ul ati o n d at a s er v e s a s a g ui d e f or t h e e y e. T h e s oli d
cir cl e s a n d d a s h e d li n e s h o w t h e a s s e s s m e nt of e nt h al p y of  mi xi n g of  Ni –
Zr  m elt s at 2 2 0 0 K o n t h e b a si s of e x p eri m e nt al t h er m o d y n a mi c d at a. [ 5 3]

Fi g ur e 7. C o m p o siti o n d e p e n d e n c e of t h e di m e n si o nl e s s f a ct or σ 1 2 , w hi c h
d e fi n e s t h e i niti al si g n of P 1 2 (t) = V R 1 2 (t) J c ( 0) / 3 N c 1 c 2 a s t h e c orr el a-
ti o n b et w e e n R 1 2 (t) a n d J c ( 0) st art s t o d e v el o p  wit h ti m e ( s e e E q u ati o n s
( 1 7) –( 2 3) a n d  m ai n t e xt f or d et ail s), e v al u at e d at t e m p er at ur e s 2 2 0 0 K
( u p w ar d-f a ci n g tri a n gl e s), 1 7 0 0 K ( s q u ar e s), a n d 1 2 0 0 K ( d o w n w ar d-f a ci n g
tri a n gl e s). T h e li n e s s er v e a s a g ui d e f or t h e e y e.

cr y st alli z ati o n at 1 1 5 0  K.  T h er ef or e, a n i niti al o bt u s e a n gl e
(σ 1 2 < 0) b et w e e n R 1 2 (t) a n d J c ( 0) tr a n sf or m s t o a n a c ut e a n-
gl e t o i n cr e a s e a m plit u d e of fl u ct u ati o n s i n at o mi c or d eri n g i n
t h e  m o d el s of  Ni8 7. 5 Zr 1 2. 5 a n d  Ni 1 2. 5 Zr 8 7. 5 m elt s t o w ar d  m or e
t h er m o d y n a mi c all y st a bl e st at e s, r e s ulti n g i n W 1 2 > 0. It c a n
b e s e e n i n Fi g ur e 5 c t h at t hi s e ff e ct i s  m or e pr o n o u n c e d f or
t h e  m o d el of  Ni8 7. 5 Zr 1 2. 5 m elt i n c o m p ari s o n  wit h t h e  m o d el of
Ni 1 2. 5 Zr 8 7. 5 m elt.  M e a n w hil e, W 1 2 / k B T r e m ai n s n e g ati v e f or e n-
ri c h e d all o y c o m p o siti o n s u p o n  m elt u n d er c o oli n g.  M or e s p e cif-
i c all y, W 1 2 / k B T i s pr a cti c all y i n d e p e n d e nt of t e m p er at ur e i n t h e
c o m p o siti o n r a n g e of 0 .2 5 c Ni 0 .3 7 5  w hil e it st art s t o e x hi bit
at 1 2 0 0  K pr o gr e s si v el y l ar g er ri s e s t o w ar d z er o a s  Ni c o nt e nt i n-
cr e a s e s.

O n t h e b a si s of t h e o b s er v e d b e h a vi or of W 1 2 / k B T , w e s u g-
g e st t h at i n t h e c o m p o siti o n r a n g e of 0 .2 5 c Ni 0 .3 7 5 t h e tr a n-
siti o n b et w e e n n or m al a n d u n d er c o ol e d li q ui d st at e s of  Ni – Zr
m elt s o c c ur s i n a s m o ot h  m a n n er,  wit h o ut d e v el o pi n g a n y si g nif-
i c a nt c h a n g e s i n t h e c oll e cti v e di ff u si o n d y n a mi c s. F urt h er m or e,
t hi s o b s er v ati o n i s i n a c c or d a n c e  wit h t h e r e s ult s f or t h e r ati o
D Ni / D Zr pr e s e nt e d i n Fi g ur e 4.  W e r e c all t h at t h e r ati o D Ni / D Zr i s
s m all e st i n t h e c o m p o siti o n r a n g e of 0 .3 7 5 c Ni 0 .5 a n d al s o
it i s pr a cti c all y i n d e p e n d e nt of t e m p er at ur e  wit hi n t hi s r a n g e.
O v er all, o n e c a n s e e i n Fi g ur e s 4 a n d 5 c t h at b ot h D Ni / D Zr a n d
W 1 2 / k B T c h a n g e f airl y sli g htl y u p o n  m elt u n d er c o oli n g i n t h e
c o m p o siti o n r a n g e of 0 .2 5 c Ni 0 .5.  T h u s,  w e  m a y c o n cl u d e
t h at i n t hi s c o m p o siti o n r a n g e b ot h si n gl e- p arti cl e a n d c oll e cti v e
di ff u si o n d y n a mi c s i n t h e  m o d el s of  Ni – Zr  m elt s sl o w d o w n h o-
m o g e n e o u sl y u p o n u n d er c o oli n g.  N e xt, if  w e f urt h er s u g g e st t h at
s u c h h o m o g e n e o u s d y n a mi c al sl o w d o w n i s r el at e d t o e n h a n c e d
st a bilit y of u n d er c o ol e d  m elt a g ai n st cr y st alli z ati o n, t h e n it f ol-
l o w s t h at  Ni – Zr all o y s s h o ul d r e v e al pr o n o u n c e d gl a s s-f or mi n g
a bilit y i n t h e c o m p o siti o n r a n g e of 0 .2 5 c Ni 0 .5. I n t hi s c o n-
t e xt, o n e  m a y al s o e x p e ct t h at  Ni3 7. 5 Zr 6 2. 5 all o y, l o c at e d i n t h e  mi d-
dl e of t h e c o m p o siti o n r a n g e, o u g ht t o b e t h e b e st gl a s s f or m er
i n t h e bi n ar y  Ni – Zr s y st e m.

I n or d er t o u n d er st a n d h o w t h e h o m o g e n e o u s d y n a mi c al sl o w-
d o w n i s r el at e d t o c h a n g e s i n t h e c o n n e cti vit y n et w or k of at o mi c
cl u st er s c o n si sti n g of c o or di n ati o n p ol y h e dr o n s of  Ni a n d  Zr
at o m s, a d et ail e d a n al y si s of e v ol uti o n of di s or d er e d str u ct ur e
of t h e  m o d el s of  Ni – Zr  m elt s u p o n u n d er c o oli n g i s r e q uir e d i n
t h e c o m p o siti o n r a n g e of 0.2 5 c Ni 0 .5. F or i n st a n c e, it  w a s
d e m o n str at e d pr e vi o u sl y t h at t h e c o n n e cti vit y n et w or k of i c o s a-
h e dr a s h ari n g c o m m o n at o m s p er c ol at e s di s or d er e d str u ct ur e a s
u n d er c o ol e d  m o n at o mi c  m elt b e c o m e s gl a s s. [ 5 4, 5 5] C o n s e q u e ntl y,
d y n a mi c al sl o w d o w n a n d p e c uli ariti e s of cr y st al n u cl e ati o n i n u n-
d er c o ol e d  m o n at o mi c  m elt  w er e i nt er pr et e d fr o m t hi s p oi nt of
vi e w. [ 5 6, 5 7] Si mil ar st u di e s c o n c er ni n g t h e  m o d el s of  Ni – Zr  m elt s
will b e t h e s u bj e ct of o ur f ut ur e  w or k b ut li e s b e y o n d t h e s c o p e
of t h e pr e s e nt arti cl e. F urt h er m or e, i n a bi n ar y ( or  m ulti c o m p o-
n e nt) s y st e m s urf a c e- e n h a n c e d st a bili z ati o n of at o mi c or d eri n g
i n u n d er c o ol e d  m elt  m a y pl a y a n i m p ort a nt r ol e a n d s h o ul d b e
t a k e n i nt o a c c o u nt i n t h e f ut ur e st u di e s a s it  w a s d e m o n str at e d
i n r ef s. [ 5 8, 5 9].

L a st,  w e  m a y i n di c at e t h at i n  m ulti c o m p o n e nt  Zr- b a s e d
B M G s t h e o pti m al r ati o b et w e e n l ar g er “ Zr-li k e ” at o m s ( s u c h
a s  Zr,  Ti,  Hf, et c.) a n d s m all er “ Ni-li k e ” at o m s ( s u c h a s
Ni,  C u,  C o, et c.) s h o ul d b e cl o s e t o t h e “ m a st er ” c o m p o-
siti o n r a n g e of 0 .2 5 c Ni 0 .5  w hi c h i s i d e nti fi e d a b o v e
f or t h e bi n ar y  Ni – Zr s y st e m. I n p arti c ul ar, f or  Zr- b a s e d
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m ulti c o m p o n e nt  Zr 4 6. 7 5 Ti 8. 2 5 C u 7. 5 Ni 1 0 B e 2 7. 5 gl a s s-f or mi n g  m elt
m e nti o n e d i n t hi s arti cl e, o n e c a n r e a dil y fi n d t h at ( c Ni + c C u )/
(c Ni + c C u + c Zr + c Ti ) ≈ 0 .2 4.

5.  C o n cl u si o n s

W e h a v e pr e s e nt e d a c o m pr e h e n si v e, a c c ur at e, a n d s elf-
c o n si st e nt d at a b a s e of di ff u si o n pr o p erti e s of  Ni – Zr  m elt s g e n er-
at e d  wit hi n t h e fr a m e w or k of t h e  m ol e c ul ar- d y n a mi c s  m et h o d i n
c o nj u n cti o n  wit h t h e st at e- of-t h e- art s e mi- e m piri c al  m a n y- b o d y
i nt er at o mi c p ot e nti al d e v el o p e d i n r ef. [ 1 4].  W e h a v e c arri e d o ut
a c ar ef ul c o m p ari s o n of o ur si m ul ati o n r e s ult s  wit h t h e e xi sti n g
e x p eri m e nt al d at a t o a s s e s s t h e r eli a bilit y of t h e  m o d el d e s cri p-
ti o n of  Ni – Zr  m elt s.  T h e hi g h q u alit y of t h e i nt er at o mi c p ot e nti al
d e v el o p e d i n r ef. [ 1 4] f or  m ol e c ul ar d y n a mi c si m ul ati o n of  Ni – Zr
m elt s h a s b e e n c o n fir m e d.

W e h a v e f urt h er el a b or at e d t h e or eti c al i n si g ht i nt o t h e i nt er-
r el ati o n b et w e e n si n gl e- p arti cl e a n d c oll e cti v e di ff u si o n i n a bi-
n ar y  m elt d e v el o p e d i n o ur r e c e nt arti cl e. [ 2 6] S p e ci fi c all y, t h e e x-
pli cit e x pr e s si o n f or t h e cr o s s- c orr el ati o n f u n cti o n b et w e e n t h e
i nt er di ff u si o n fl u x, J c ( 0), a n d t h e f or c e c a u s e d b y t h e di ff er-
e n c e i n t h e a v er a g e r a n d o m a c c el er ati o n s of at o m s of di ff er e nt
s p e ci e s, R 1 2 (t), h a s b e e n d eri v e d i n t h e s h ort ti m e li mit t → 0, a s
P 1 2 (t)/ k B T ≈ σ 1 2

2
c t.  H e n c e, it h a s b e e n d e m o n str at e d t h at t h e

i niti al si g n of P 1 2 (t), a s t h e c orr el ati o n b et w e e n R 1 2 (t) a n d J c ( 0)
st art s t o d e v el o p  wit h ti m e, i s d et er mi n e d b y t h e di m e n si o nl e s s
f a ct or, σ 1 2 = (c 2 m 2

2
1 + c 1 m 1

2
2 − m 2

c )/ m 2
c .  T hi s q u a ntit y d e-

p e n d s o n t h e c o m p o siti o n, t h e r ati o of t h e at o mi c  m a s s e s, a n d t h e
r ati o s b et w e e n t h e s o- c all e d Ei n st ei n fr e q u e n ci e s α (α = 1 , 2)
a n d c a s s o ci at e d  wit h t h e at o mi c s p e ci e s a n d t h e i nt er di ff u-
si o n fl u x, r e s p e cti v el y. F urt h er m or e,  w e h a v e ar g u e d t h at f or a bi-
n ar y  mi xi n g  m elt e x hi biti n g c h e mi c al or d eri n g i n t h e n or m al li q-
ui d st at e (i. e., a b o v e it s li q ui d u s t e m p er at ur e), a n i niti al ( t → 0)
o bt u s e a n gl e ( σ 1 2 < 0) b et w e e n R 1 2 (t) a n d J c ( 0) s h o ul d r e m ai n
pr e d o mi n a ntl y o bt u s e t o e n s ur e a n e g ati v e v al u e of t h e a v er a g e
a m o u nt of g e n er at e d- di s si p at e d e n er g y, W 1 2 < 0, o v er t h e  w h ol e
c orr el ati o n p eri o d b et w e e n R 1 2 (t) a n d J c ( 0).  A c c or di n gl y, it a p-
p e ar s t h at σ 1 2 < 0 a n d W 1 2 < 0 c a n b e c o n si d er e d a s n e c e s s ar y
c o n diti o n s f or a bi n ar y  mi xi n g  m elt e x hi biti n g c h e mi c al or d eri n g
t o b e i n t h er m o d y n a mi c e q uili bri u m.  A r el ati v e c h a n g e i n W 1 2

c a n b e u s e d t o c h ar a ct eri z e t h e v ari ati o n i n d y n a mi c al st a bilit y of
at o mi c or d eri n g i n a bi n ar y  m elt u p o n u n d er c o oli n g.  M or e o v er,
w e h a v e p oi nt e d o ut t h at a n i niti al o bt u s e a n gl e b et w e e n R 1 2 (t)
a n d J c ( 0)  m a y pri n ci p all y tr a n sf or m t o a n a c ut e a n gl e l e a di n g t o
W 1 2 > 0 i n a n att e m pt t o pr o m ot e e v ol uti o n of a n u n d er c o ol e d bi-
n ar y  mi xi n g  m elt t o w ar d a  m or e t h er m o d y n a mi c all y st a bl e st at e.

W e h a v e e m pl o y e d t h e el a b or at e d t h e or eti c al d e s cri pti o n of t h e
i nt err el ati o n b et w e e n si n gl e- p arti cl e a n d c oll e cti v e di ff u si o n i n
a bi n ar y  m elt t o a n al y z e o ur si m ul ati o n d at a o n di ff u si o n pr o p-
erti e s of  Ni – Zr  m elt s. I n p arti c ul ar,  w e h a v e d e m o n str at e d t h at
t h e p o siti v e v al u e s of W 1 2 o b s er v e d i n t h e  m o d el s of  Ni 8 7. 5 Zr 1 2. 5

a n d  Ni 1 2. 5 Zr 8 7. 5 m elt s at 1 2 0 0  K r e fl e ct c h a n g e s i n at o mi c d y-
n a mi c s pr e c e di n g t h e o n s et of t h eir cr y st alli z ati o n at 1 1 5 0  K.  W e
h a v e al s o f o u n d t h at t h e ri s e of W 1 2 / k B T t o w ar d p o siti v e v al u e s
i n t h e  m o d el s of  Ni-ri c h  Ni – Zr  m elt s u p o n u n d er c o oli n g i s a c-
c o m p a ni e d b y a si g ni fi c a nt d e c o u pli n g of t h e s elf- di ff u si o n c o ef-
fi ci e nt s of  Ni a n d  Zr a s c h ar a ct eri z e d b y t h eir r ati o D Ni / D Zr . S u c h
j oi nt b e h a vi or of W 1 2 / k B T a n d D Ni / D Zr u p o n u n d er c o oli n g h a s

b e e n i nt er pr et e d a s a  m a nif e st ati o n of e m er gi n g h et er o g e n eiti e s
i n at o mi c d y n a mi c s of  m elt d u e t o e nt eri n g t h e e n er g y l a n d-
s c a p e c o ntr oll e d r e gi m e.  W e h a v e o b s er v e d t h at b ot h D Ni / D Zr

a n d W 1 2 / k B T c h a n g e f airl y sli g htl y u p o n  m elt u n d er c o oli n g i n
t h e c o m p o siti o n r a n g e of 0.2 5 c Ni 0 .5.  H e n c e,  w e h a v e i n-
f err e d t h at i n t hi s c o m p o siti o n r a n g e b ot h si n gl e- p arti cl e a n d c ol-
l e cti v e di ff u si o n d y n a mi c s sl o w d o w n h o m o g e n e o u sl y u p o n t h e
tr a n siti o n b et w e e n t h e n or m al a n d u n d er c o ol e d li q ui d st at e s of
Ni – Zr  m elt s. Fi n all y,  w e h a v e s u g g e st e d t h at s u c h h o m o g e n e o u s
d y n a mi c al sl o w d o w n i s r el at e d t o t h e e n h a n c e d st a bilit y of u n d er-
c o ol e d  m elt a g ai n st cr y st alli z ati o n.  T hi s all o w s i d e ntif yi n g  Ni – Zr
m elt s  wit hi n t h e c o m p o siti o n r a n g e of 0 .2 5 c Ni 0 .5 a s s y s-
t e m s e x hi biti n g pr o n o u n c e d gl a s s-f or mi n g a bilit y.
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[ 4 7] S. Stü b er, P h. D. T h esis , Te c h ni s c h e  U ni v er siẗat  M ü n c h e n, 2 0 0 9 .
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Appendix A 
 
 We use calculations of the pair distribution function,  ( ), to confirm the onset of 

crystallization in a model system. Physically,  
 
 ( )  

  ( )

      
 is the atomic density of particles at 

a distance   from a particle fixed at the centre, i.e., the number of particles   ( ) inside the 
spherical shell between   and      divided by the volume        of the shell. In Figures SA1-
SA5, we show  ( ) calculated for the model Ni, Zr, Ni87.5Zr12.5, Ni75Zr25, and Ni12.5Zr87.5 systems 
at temperatures in the vicinity of the onset of crystallization. 

 
Figure SA1. Pair distribution function,  ( ), calculated at temperatures in the vicinity of the onset 
of crystallization of the model of Ni melt. 
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Figure SA2. Pair distribution function,  ( ), calculated at temperatures in the vicinity of the onset 
of crystallization of the model of Zr melt. 

 
Figure SA3. Pair distribution function,  ( ), calculated at temperatures in the vicinity of the onset 
of crystallization of the model of Ni87.5Zr12.5 melt. 
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Figure SA4. Pair distribution function,  ( ), calculated at temperatures in the vicinity of the onset 
of crystallization of the model of Ni75Zr25 melt. 

 
Figure SA5. Pair distribution function,  ( ), calculated at temperatures in the vicinity of the onset 
of crystallization of the model of Ni12.5Zr87.5 melt. 
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 As can be seen in Figure SA1, the crystalline FCC peaks appear in  ( ) of the Ni model at 
1150 K. Meanwhile, the second peak in  ( ) of the model of Zr melt splits at 1550 K into two 
crystalline peaks located at    ⁄  (   is the position of the first peak in  ( )) approximately equal 
to 1.6 and 1.9, respectively (see Figure SA2). These two peaks (strictly speaking the closest of 
them appears as a shoulder) are typical for both BCC and HCP (hexagonal close-packed) lattices. 
Since the first wide peak in  ( ) of the Zr model at the beginning of the crystallization process can 
encompass the first and second (   ⁄      ) nearest neighbour shells of BCC lattice, it is 
difficult to precisely identify nucleation of which of the two crystal lattices occurs primarily from 
the melt during our simulation. As it can be seen in Figures SA3-SA5, the transformations observed 
in  ( ) at the beginning of the crystallization processes in the models of Ni87.5Zr12.5, Ni75Zr25, and 
Ni12.5Zr87.5 melts are similar to those which we discussed above for the model of Zr melt. 
 
Appendix B 
 
 In the main text, we note that the calculation of the kinetic part of the interdiffusion 
coefficient,  ̃  , is facilitated via the Green-Kubo formalism by making use of Eq. (9). As several 
examples, in Figures SB1-SB3 we show the normalised autocorrelation function of the 
interdiffusion flux   ,   ( )     ( )    ( )⁄ , as well as its time integral, 

     ( )  ∫   (  )   

 

 

                                                            (   ) 

calculated for the models of Ni62.5Zr37.5, Ni50Zr50 and Ni37.5Zr62.55 melts at 2000 an 1200 K. These 
Figures are designed to illustrate the evaluation of  ̃  . 

           
(a)                                                                         (b) 

Figure SB1. (a) The normalised autocorrelation function of the interdiffusion flux   ( )  
   ( )    ( )⁄  and (b) its time integral   ( ) calculated for the model of the Ni62.5Zr37.5 melt at 
2000 and 1200 K. The horizontal lines indicate the asymptotic values for: (a)   ( )  
   ( )    ( )⁄  and (b)   ( ). 
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(a)                                                                         (b) 

Figure SB2. (a) The normalised autocorrelation function of the interdiffusion flux   ( )  
   ( )    ( )⁄  and (b) its time integral   ( ) calculated for the model of the Ni50Zr50 melt at 2000 
and 1200 K. The horizontal lines indicate the asymptotic values for: (a)   ( )     ( )    ( )⁄  
and (b)   ( ). 

           
(a)                                                                         (b) 

Figure SB3. (a) The normalised autocorrelation function of the interdiffusion flux   ( )  
   ( )    ( )⁄  and (b) its time integral   ( ) calculated for the model of the Ni37.5Zr62.5 melt at 
2000 and 1200 K. The horizontal lines indicate the asymptotic values for: (a)   ( )  
   ( )    ( )⁄  and (b)   ( ). 
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Chapter 4: Relevant Study of Different 
Type Binary Melts 

This chapter showcases further relevant molecular dynamics study on binary 

liquid alloys of Ni-Al and Cu-Ag melts and serves as a brief excursion beyond the Ni-

Zr alloy melts to give insight into the research and treatment of the different model 

systems, which is later used to obtain further insight into diffusion dynamics, 

elaborated in Chapter 5. Here, the studies of the different systems are separated in two 

groups of melts with i) chemical ordering and ii) demixing tendency. The binary alloys 

of Ni-Al belong, like the Ni-Zr system, to the first type of melt, while the Cu-Ag 

system is grouped to the latter. Due to different type of atomic ordering behaviour, the 

alloys exhibit a significant change in diffusion characteristics. A thorough analysis and 

comparison of the different type of melts follows in Chapter 5, based on the discussed 

model systems.  

 

4.1 BINARY LIQUID ALLOY WITH MIXING TENDENCY 

 

4.1.1 The Ni-Al System 

In one previous study [73], a new theoretical background for equilibrium 

molecular dynamics simulation is applied to a model of Ni50Al50 to showcase the 

influence on thermotransport properties by the interatomic potential used for the 

simulation. By incorporation of the Green-Kubo formalism, thorough information 

about transport properties of the model system is gained. Driven by a temperature 

gradient, thermotransport behaviour is analysed. A different potential for the 

embedded-atom method is then used and results compared to other computational 

studies as well as experimental data. While the prediction of direct transport 

coefficients via both EAM potentials (EAM-2002 [74] and EAM-2009 [48]) 

consistently agree, a contrary behaviour of the cross-coupled heat and mass transport 

results arise, predicting opposite directions of the heat of thermotransport. 
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Simulations in molecular dynamics are performed for the model system Ni50Al50 

in a considered temperature range 4000 K to 1750 K [73]. For evaluation of the 

movement of atoms over time, the Verlet algorithm is used. Introducing time constants 

representing characteristic times of relaxation of the auto- and cross-correlation 

functions needed for evaluation of the total heat flux, 𝐽𝐽𝑞𝑞. Its reduced part, 𝐽𝐽′𝑞𝑞, contains 

enthalpic contributions, expressed through partial enthalpies carried by the 

interdiffusion flux, 𝐽𝐽𝑐𝑐. Further investigation of thermodynamic properties is then 

carried out and compared to experimental results and the EAM-2002 potential. 

Visualisation of partial enthalpies and autocorrelation functions are thoroughly 

explained by supporting in-depth explanation and derivation of theoretical background 

resulting in opposite signs of thermotransport for the different EAM potentials. For its 

calculation, the sign of 𝐿𝐿′𝑐𝑐𝑞𝑞 is dependent on the two variables of 𝐶𝐶𝑐𝑐𝑞𝑞(0) and 𝐻𝐻�𝑐𝑐 (the 

characteristic enthalpy per atom), both of which are dependent on each potential of the 

embedded-atom method. Therefore it is established, that under the presence of a 

temperature gradient, component 1 will diffuse from the cold to the hot end if 𝐶𝐶′𝑐𝑐𝑐𝑐
(0)

𝐶𝐶𝑐𝑐𝑐𝑐(0)
=

𝐶𝐶𝑐𝑐𝑐𝑐(0)
𝐶𝐶𝑐𝑐𝑐𝑐(0)

− 𝐻𝐻�𝑐𝑐 > 0. Vice versa, component 1 will diffuse from the hot to the cold end if 

𝐶𝐶′𝑐𝑐𝑐𝑐(0)
𝐶𝐶𝑐𝑐𝑐𝑐(0)

= 𝐶𝐶𝑐𝑐𝑐𝑐(0)
𝐶𝐶𝑐𝑐𝑐𝑐(0)

− 𝐻𝐻�𝑐𝑐 < 0. This method is very useful for fitting interatomic potential 

for reproduction of the sign of thermotransport obtained from experiments in a very 

time efficient manner. 

The work provides detailed understanding of phenomenological coefficients of 

thermotransport and thermodynamic properties in the melt and their dependence on 

the potential used. Introducing a novel methodology for quick analysis for fitting 

interatomic potential, while also elaborating on a quantitative prediction of complete 

thermotransport processes, by making use of the reduced heat of transport parameter, 

𝐽𝐽′𝑞𝑞, associated with the interdiffusion flux, 𝐽𝐽𝑐𝑐. Consequently, this content helps for a 

better understanding of peculiarities of transport properties of the model system by 

decomposing transport coefficients into the product of equal-time correlation of fluxes 

and the time constant that characterises decay in their correlation. Knowledge gained 

on the thermotransport and thermodynamic properties in alloys is crucial for the choice 

and the design of materials, particularly in the wide field of materials science and its 

broad range of engineering applications. 
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Further research is undertaken on binary melts of the Ni-Al system, considering 

a wide composition and temperature range, creating an extensive database on diffusion 

and thermotransport properties in [14]. This work [14] provides elaborated insights 

into theoretical background with simulation results of high accuracy and careful 

comparison with existing experimental data. Here, a model describing the behaviour 

of enthalpy of mixing in the melt is developed, which can be used for the evaluation 

of partial enthalpies. This is a great method for a detailed description of 

thermotransport properties. Calculations on 𝑄𝑄𝐶𝐶∗′, the reduced heat of transport, are used 

to describe pure heat conduction in isothermal conditions. The evaluation allows for 

the prediction of the direction of atoms of different species as a result of their migration 

under a temperature gradient, concluding that Ni atoms migrate to the cold end; whilst 

the Al atoms migrate toward the hot end [14]. The simulation results are collected in 

an extensive set of data which is then further used in [11] (follows in Chapter 5) to 

establish theoretical relations in diffusion and thermotransport properties for melts of 

different types.  

 

4.2 BINARY LIQUID ALLOY WITH DEMIXING TENDENCY 

 

4.2.1 The Cu-Ag System 

Previous work [16] investigates mass transport properties of liquid Cu-Ag alloys 

using molecular dynamics. The simulation is performed by applying the Green-Kubo 

formalism to obtain results over a wider temperature and composition range. The 

benefit of this method over other theoretical approaches used in the field is, the 

minimisation of errors that occur otherwise in approaches based on the correctness of 

physical assumptions on structure and type of diffusive motion. The molecular 

dynamics method is a reliable approach to obtain diffusion coefficients in the melt and 

interaction of atoms with each other calculated with interatomic potentials. Statistical 

mechanics are applied to solve the time evolution of the system, resulting in tracer 

coefficients and various measurable transport properties of the liquid melt. Simulation 

results are validated by comparison to existing experimental data. The large number 

of calculations creates a vast set of mass transport coefficients, temperature- and 
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composition dependent, which can be used to predict the outcome of real life 

experiments on Cu-Ag melts [16]. 

The calculations in [16] elaborate on theoretical relations of the interdiffusion 

flux, 𝐽𝐽𝑐𝑐, and its relation involving microscopic fluxes of matter of atoms of different 

species in the melt. Using statistical mechanics to calculate phenomenological 

coefficients that are then evaluated with the Green-Kubo formalism via integration of 

correlation functions over time. Additionally, calculating the tracer- and collective 

diffusion coefficients in the melt as well as the well-known Manning factor. These are 

then used to obtain the mean-squared displacement of atoms of different species. The 

phenomenological coefficients evaluated in [16] characterise kinetics of tracer and 

collective diffusion in the melt of Cu-Ag models. Diffusion processes that arise in the 

melt of a system typically follow the Arrhenius law and are well described by the 

equation: 𝐷𝐷 = 𝐷𝐷0𝑒𝑒𝑥𝑥𝑝𝑝(−𝐸𝐸𝐴𝐴 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ). As a result of thorough treatment of simulation 

data and establishing theoretical relations with help of statistical mechanics, a set of 

Arrhenius-parameters is presented, liquidus temperatures of pure Ag and Cu, in 

addition to several alloys shown and finally compared to existing experimental results. 

Visualisation of tracer diffusion coefficients including Arrhenius fits and experimental 

data showcase the high accuracy of the applied simulation method and used 

interatomic potential [16].  

This work [16] offers a detailed insight into mass transport properties of liquid 

Cu-Ag melts. Via comparison of simulation and experiments, the accuracy of this 

study is confirmed and can therefore be used to predict kinetics that arise in the 

solidification process of Cu-Ag melts [16]. The created overview gives a broad picture 

of temperature- and composition dependencies of diffusion properties, describing self-

diffusion, tracer diffusion and the kinetic part of interdiffusion as well as the Manning 

factor. Increasing commercial demand for copper materials and its alloys operating at 

high temperatures, makes a better understanding of solidification processes that arise 

in the melt a crucial requirement and amplifies the importance of the chosen system 

[75,76]. Theoretical relations elaborated become a significant help for designing new 

materials with critical material-properties requirements for applications in the field of 

engineering. Finally, outcomes of this study are used for a comparison of melts of 

different types in the following Chapter 5. 
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Chapter 5: Diffusion Kinetics in Binary 
Liquid Alloys with Ordering and 
Demixing Tendencies 

5.1 INTRODUCTION 

This chapter explores theoretical relation of diffusion coefficients in terms of 

tracer and collective diffusion dynamics and addresses the objectives stated in section 

2.7. The presented work has already been published as a book chapter as part of the 

Springer series in materials science. Its manuscript has been reproduced in its entirety 

to contextualise the achieved methodology and results in the framework of this thesis. 

The thorough examination of theoretical background exploits generalised Langevin 

equations for velocities, using differential calculations for the velocity autocorrelation 

functions and discusses their properties in the equilibrium state of the system. Also, 

with tracer memory kernels and random forces of the atoms of different species, it 

presents an alternative expression for the interdiffusion flux, 𝐽𝐽𝑐𝑐. By taking into 

consideration the dependence of frequency of diffusion coefficients, correlations 

between the random forces and the interdiffusion flux are elaborated. The correction 

factor, 𝑆𝑆, which characterises cross-correlation effects in the collective part of 

diffusion kinetics, is decomposed. By making use of the energy fluctuation-dissipation 

theorem and its application to different types of melts with chemical ordering (Ni-Zr 

and Ni-Al) and demixing tendency (Cu-Ag) case study systems, contrary behaviour of 

the different type systems is derived. 

The decomposed properties of the correction factor, 𝑆𝑆, namely 𝑆𝑆0 and 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄ , 

are calculated and shown as composition dependent figures, clearly displaying the 

different trends of systems with chemical ordering and demixing tendency. As 

predicted by previously established theoretical treatment, in case of chemical ordering, 

i.e. Ni-Al and Ni-Zr, the correction factor is not exceeding unity over the whole 

composition range, in contrast to the case study of Cu-Ag which shows the correction 

factor greater than unity. A closer look into the decomposed factor 𝑆𝑆0 shows 

differences within melts of systems with chemical ordering as a result of their ratio of 

atomic masses and diffusion coefficients, creating a damping effect of single-particle 
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kinetics in the Ni-Zr system while magnifying said effect in the Ni-Al system. Further 

investigations of the properties display and clarify alterations in the behaviour of the 

different type systems, additionally applying gained knowledge and understanding of 

theoretical background for validation to experimental work. 

This work dives deep into the background and derivation of theoretical treatment 

of thermotransport properties in binary melts, reflecting significant results dependent 

on atomic ordering properties of the melt. A clear distinction between melts with 

mixing- and demixing tendency is established via behaviour of the correction factor 

and its decomposed properties. For binary liquid random alloy, introducing a novel 

concept, stating that the correction factor 𝑆𝑆 = 𝑆𝑆0 when 𝑊𝑊12 = 0. Further investigation 

determines 𝑆𝑆 < 𝑆𝑆0 (𝑊𝑊12 < 0) for binary mixing melts with chemical ordering and 

opposite behaviour for melts with demixing tendency 𝑆𝑆 > 𝑆𝑆0 (𝑊𝑊12 > 0). Thus, 

demonstrated theory can be used to interpret experimental results obtained related to 

the Darken equation and to study the correction factor more detailed. The outcomes of 

this chapter deliver fundamental understanding of atomic behaviour of the simulated 

alloy systems. This is used to predict diffusion dynamics of melts upon solidification 

and its resulting microstructure. Hence, improving the controllability of designing 

advanced materials, like metallic glass.  
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Abstract. Theoretical relationship between collective and tracer diffusion 

coefficients has been derived and tested for different types of binary melts: (i) with an 

ordering tendency (case study on Ni-Al and Ni-Zr melts) and (ii) with a demixing 

tendency (case study on Cu-Ag melts). The obtained relationship explicitly 

demonstrates microscopic cross-correlation effects in the kinetics of collective 

diffusion. Our approach incorporates molecular dynamics calculations, modelling and 

statistical mechanical analysis based on fundamental concepts of the fluctuation-

dissipation theorem, generalized Langevin equation and Mori-Zwanzig formalism. We 

also applied the developed theory to interpret recent available experimental data as 

well as our molecular dynamics data of diffusion kinetics in different types of binary 

melts: with chemical ordering and contrarily with demixing tendency. 

 

5.2.1 Introduction 

The alloys of the studied systems (Ni-Al, Ni-Zr, Cu-Ag) attracted attention thanks to 

their unique physical, chemical and electrical properties [1-8]. Since the studied alloys 

have significant engineering importance, it is necessary to have an excellent 

understanding of mass transport properties of these alloys within the liquid state. In 

particular, the knowledge of diffusion coefficients in liquid alloys is essential for 

controlling of the crystalline microstructure during solidification process in 

experiment [9] as well as for essential parameters input in phase field modelling [9,10]. 

However, the current capacity of existing experimental diffusion database of liquid 

alloys is very limited [11-18] because of technical difficulties and high costs associated 

with the experimental measurements of the diffusion properties in the melts. Hence, 

establishing theoretical relation between different mass transport coefficients is 

important for a quantitative prediction of materials properties as some of the unknown 

coefficients can be expressed via others, which are reliably measurable in the 

experiment [19]. 

Dynamical and transport properties of many-body system can be expressed in 

terms of the time-correlation functions of appropriate physical variables. For example, 

the frequency-dependent thermal conductivity and diffusion coefficient of a many-

body system are the one-sided Fourier transforms of the time-correlation functions of 

the heat and mass currents, respectively. Therefore, for understanding, predicting, 

controlling dynamical, and transport properties of many-body systems, it is important 
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to develop methods of calculation, modelling and analysis of this time-correlation 

functions. Our group developed an innovative approach based on fundamental 

concepts of the Brownian motion [20,21], the fluctuation-dissipation theorem [20,21], 

generalized Langevin equation [20,21] and Mori-Zwanzig formalism [22-25]. These 

concepts state a general relationship between response of a given system to an external 

disturbance and the internal fluctuations of the system in the absence of the 

disturbance. In this chapter, we will focus on mass transport properties in different 

types of binary melts: with chemical ordering (case study on Ni-Al and Ni-Zr melts) 

and with phase separation tendency (case study on Cu-Ag melts). 

In 1948 Darken [26] introduced an equation for a binary system, which 

expressed the interdiffusion coefficient, 𝐷𝐷𝑐𝑐, via two self-diffusion coefficients, 𝐷𝐷1 and 

𝐷𝐷2: 

𝐷𝐷𝑐𝑐 = Φ(𝑐𝑐2𝐷𝐷1 + 𝑐𝑐1𝐷𝐷2),                                                     (1) 

 

where 𝑐𝑐1 and 𝑐𝑐2 are the atomic fractions of species 1 and 2, Φ is the 

thermodynamic factor. Note 𝑐𝑐1 = 𝑁𝑁1
𝑁𝑁

, 𝑐𝑐2 = 𝑁𝑁2
𝑁𝑁

 , where  𝑁𝑁1 is number of atoms of 

species 1, 𝑁𝑁2 is number of atoms of species 2, 𝑁𝑁 is the total number of atoms in the 

system, i.e. 𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2 .  

Equation (1) is known as Darken equation. Both 𝐷𝐷𝑐𝑐  and Φ are in principal 

accessible in experiment. The thermodynamic factor Φ is the normalized second 

derivative of the molar Gibbs free energy 𝐺𝐺 𝑁𝑁⁄  with respect to the composition 

𝑐𝑐1 (𝑐𝑐2) at constant temperature 𝑇𝑇 and pressure 𝑃𝑃: 

 

Φ = 𝑐𝑐1𝑐𝑐2
𝑘𝑘B𝑘𝑘

�𝜕𝜕
2(𝐺𝐺 𝑁𝑁⁄ )
𝜕𝜕𝑐𝑐12

�
𝑘𝑘,𝐶𝐶

= 𝑐𝑐1𝑐𝑐2
𝑘𝑘B𝑘𝑘

�𝜕𝜕
2(𝐺𝐺 𝑁𝑁⁄ )
𝜕𝜕𝑐𝑐22

�
𝑘𝑘,𝐶𝐶

,                                (2) 

 

where 𝑘𝑘B is the Boltzmann constant.  

In 1961 Manning [27] included a certain correction factor of the microscopic 

kinetic origin, 𝑆𝑆, into the (1):  
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𝐷𝐷𝑐𝑐 = Φ𝑆𝑆(𝑐𝑐2𝐷𝐷1 + 𝑐𝑐1𝐷𝐷2),                                                      (3) 

 

Equation (3) is known as the Darken-Manning equation [28].  

On the other hand, the Onsager phenomenological transport equation can be 

written as [29,30] 

𝑱𝑱𝒄𝒄 = 𝐿𝐿𝑐𝑐𝑐𝑐𝑿𝑿𝑐𝑐′ .                  (4) 

 

where 𝑱𝑱𝒄𝒄  is the interdiffusion flux, 𝐿𝐿𝑐𝑐𝑐𝑐 is Onsager phenomenological coefficient 

for mass transport and 𝑿𝑿𝑐𝑐′   conjugated thermodynamic force  related to interdiffusion 

flux. Interdiffusion flux 𝑱𝑱𝒄𝒄 links with interdiffusion coefficients 𝐷𝐷𝑐𝑐 by Fick’s law: 

 

𝑱𝑱𝑐𝑐 = 𝑐𝑐2𝑱𝑱1 − 𝑐𝑐1𝑱𝑱2 = −𝑁𝑁
𝑉𝑉
𝐷𝐷𝑐𝑐𝛻𝛻𝑐𝑐1 = 𝑁𝑁

𝑉𝑉
𝐷𝐷𝑐𝑐𝛻𝛻𝑐𝑐2 = −𝑁𝑁

𝑉𝑉
𝐷𝐷𝑐𝑐(𝑐𝑐2𝛻𝛻𝑐𝑐1 − 𝑐𝑐1𝛻𝛻𝑐𝑐2), (5) 

 

where 𝑉𝑉 is the volume of the system. 

Furthermore, according to the Onsager formalism of the thermodynamics of 

irreversible processes for an isotropic binary melt [21,22], the ratio 𝐷𝐷𝑐𝑐 Φ⁄  is equal to 

the renormalized phenomenological Onsager  coefficient 𝐿𝐿�𝑐𝑐𝑐𝑐   [23]: 

 

𝐷𝐷𝑐𝑐
Φ

=
𝑉𝑉𝑘𝑘B𝑇𝑇
𝑁𝑁𝑐𝑐1𝑐𝑐2

𝐿𝐿𝑐𝑐𝑐𝑐 = 𝐿𝐿�𝑐𝑐𝑐𝑐.                                                        (6) 

 

Now for correction factor we have:  

𝑆𝑆 = 𝐷𝐷𝑐𝑐
Φ(𝑐𝑐2𝐷𝐷1+𝑐𝑐1𝐷𝐷2)

= 𝑉𝑉𝑘𝑘B𝑘𝑘𝐿𝐿𝑐𝑐𝑐𝑐
𝑁𝑁𝑐𝑐1𝑐𝑐2(𝑐𝑐2𝐷𝐷1+𝑐𝑐1𝐷𝐷2)

= 𝐿𝐿�𝑐𝑐𝑐𝑐
𝑐𝑐2𝐷𝐷1+𝑐𝑐1𝐷𝐷2

                                (7) 

 

Hence, the correction factor 𝑆𝑆 characterises cross-correlation effects in collective 

diffusion process. Available experimental [17] and simulation data [12,19,31] for the 

correction factor suggested that it should be approximately less than unity for alloys 
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with ordering tendency. However, a detailed formula for the correction factor 𝑆𝑆 

involving a cross correlation term has not been obtained until now. 

In this chapter, we will derive an expression relating collective and tracer 

diffusion coefficients. We are aiming to reveal explicitly the cross-correlation effects 

in collective diffusion. We will analyse the obtained relation for different types of 

binary melts: with chemical ordering (case study on Ni-Al and Ni-Zr melts) and with 

phase separation tendency (case study on Cu-Ag melts). Finally, we apply our 

theoretical findings for interpretation of recent available experimental data and our 

molecular dynamics (MD) data of diffusion kinetics. 

 

5.2.2 Theoretical Treatment 

 

Generalized Langevin Equations for the Velocities and Integral-Differential 
Equations for the Velocity Autocorrelation Functions 

The generalised Langevin equation plays a key role in the theoretical 

development through use of the projection-operator formalism of statistical mechanics 

introduced by Zwanzig and Mori [22-25,32]. First, consider an isotropic binary liquid 

alloy consisting of 𝑁𝑁1 atoms with mass 𝑚𝑚1 and 𝑁𝑁2 atoms having mass 𝑚𝑚2 in a fixed 

volume 𝑉𝑉 at thermal equilibrium.  

By the Mori-Zwanzig formalism [22-25,32] the total force 𝒇𝒇𝛼𝛼𝑁𝑁(𝑡𝑡) acting on the 

tagged particle  can be decomposed on the sum of systematic and random terms, the 

first and the second summands on the RHS of Equation (8) respectively: 

 

𝑚𝑚α
𝑑𝑑𝒗𝒗α𝑁𝑁(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝒇𝒇α𝑁𝑁(𝑡𝑡) = −𝑚𝑚α�𝐾𝐾α(𝑡𝑡 − 𝑡𝑡′)𝒗𝒗α𝑁𝑁(𝑡𝑡′)𝑑𝑑𝑡𝑡′
𝜕𝜕

0

+ 𝑹𝑹α𝑁𝑁(𝑡𝑡).                   (8) 

 

This is a generalized Langevin equation for the velocities 𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡) for a binary 

system, where   𝛼𝛼 = 1, 2 (𝛼𝛼 = 1: 𝑖𝑖 ∈ [1, … ,𝑁𝑁1],𝛼𝛼 = 2: 𝑖𝑖 ∈  [1, … ,𝑁𝑁2])  are tagged 

atoms of species 1 and 2; 𝐾𝐾α(𝑡𝑡) is the memory kernel for the evolution of the 

systematic/ frictional forces acting on the tagged atom 𝛼𝛼 at time 𝑡𝑡. The memory kernel 
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is proportional but opposite to the velocities of the tagged atoms at times prior to time 

𝑡𝑡, 0 ≤ 𝑡𝑡′ ≤ 𝑡𝑡.  

𝑹𝑹α𝑁𝑁(𝑡𝑡) is the random force. A random force possesses three properties [22-

25,32]: 

(1) It vanishes in the mean 〈𝑹𝑹α𝑁𝑁(𝑡𝑡)〉 = 0 (notation 〈⋯ 〉 means the statistical time 

average at thermal equilibrium),  

(2) 𝒇𝒇α𝑁𝑁(0) = 𝑹𝑹α𝑁𝑁(0), i. e. initially, the total and random forces are the same (see 

Equation (8)).  

(3) Total and random forces evolve differently with time and relation 

〈𝑹𝑹α𝑁𝑁(𝑡𝑡)𝒗𝒗α𝑁𝑁(0)〉 = 0 is preserved for all times 𝑡𝑡. In other words: random 

force is not correlated with the initial velocity 𝒗𝒗𝛼𝛼𝑁𝑁(0).  

 

Hence, if we multiply Equation (8) by 𝒗𝒗α𝑁𝑁(0) and take the thermal average, using 

the above mentioned third property of random force we will get the integral-

differential equation for the velocity autocorrelation functions, which often called a 

satellite equation for Langevin generalised Equation (8): 

 

𝑑𝑑𝜀𝜀𝛼𝛼(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −�𝐾𝐾𝛼𝛼(𝑡𝑡 − 𝑡𝑡′)𝜀𝜀𝛼𝛼(𝑡𝑡′)𝑑𝑑𝑡𝑡′
𝜕𝜕

0

,                                            (9) 

 

where 𝜀𝜀𝛼𝛼(𝑡𝑡) = 〈𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡)𝒗𝒗𝛼𝛼𝑁𝑁(0)〉 〈𝒗𝒗𝛼𝛼𝑁𝑁2 〉⁄ = 𝑚𝑚𝛼𝛼 〈𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡)𝒗𝒗𝛼𝛼𝑁𝑁(0)〉 3𝑘𝑘𝐵𝐵𝑇𝑇⁄  are the 

normalized velocity autocorrelation functions. The squared static velocities, also 

called thermal velocities, are equal to 〈𝒗𝒗𝛼𝛼𝑁𝑁2 〉 = 3𝑘𝑘𝐵𝐵𝑇𝑇 𝑚𝑚𝛼𝛼⁄ , so that 𝜀𝜀𝛼𝛼(0) = 1. 

 

Properties of the Correlation Functions of Dynamical Variables in 
Equilibrium 

We should note, that throughout the chapter, above and below, we implicitly 

employ useful properties of the correlation functions of dynamical variables in 

equilibrium. Namely, in equilibrium the derivative of the time correlation function of 

dynamical variables 𝑍𝑍(𝑡𝑡)  and 𝑌𝑌(𝑡𝑡) with respect to the initial time 𝑡𝑡0 must be zero, 
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namely: 𝑑𝑑
𝑑𝑑𝜕𝜕0

〈𝑍𝑍(𝑡𝑡 + 𝑡𝑡0)𝑌𝑌( 𝑡𝑡0)〉 = 0. So, applying the product rule the LHS of the above 

expression we get: 

 

〈
𝑑𝑑
𝑑𝑑𝑡𝑡0

�𝑍𝑍(𝑡𝑡 +  𝑡𝑡0)�𝑌𝑌( 𝑡𝑡0)〉 + 〈𝑍𝑍(𝑡𝑡 +  𝑡𝑡0)
𝑑𝑑
𝑑𝑑𝑡𝑡0

�𝑌𝑌( 𝑡𝑡0)�〉 

= 〈�̇�𝑍(𝑡𝑡 +  𝑡𝑡0)𝑌𝑌( 𝑡𝑡0)〉 + 〈𝑍𝑍(𝑡𝑡 + 𝑡𝑡0)�̇�𝑌( 𝑡𝑡0)〉 = 0.                      (10) 

 

And in case of autocorrelation function, i.e. 𝑍𝑍(𝑡𝑡) = 𝑌𝑌(𝑡𝑡), in we get 

〈�̇�𝑍(𝑡𝑡)𝑍𝑍( 0)〉 = −〈𝑍𝑍(𝑡𝑡)�̇�𝑍( 0)〉, 〈�̇�𝑍(𝑡𝑡)𝑍𝑍( 𝑡𝑡)〉 = 〈�̇�𝑍(0)𝑍𝑍( 0)〉 = 〈𝑍𝑍�̇�𝑍〉 = 0, and for the 

second derivative 〈�̈�𝑍(𝑡𝑡)𝑍𝑍( 0)〉 = −〈�̇�𝑍(𝑡𝑡)�̇�𝑍( 0)〉, where �̇�𝑍 = 𝑑𝑑𝑍𝑍
𝑑𝑑𝜕𝜕

 and �̈�𝑍 = 𝑑𝑑2𝑍𝑍
𝑑𝑑𝜕𝜕2

. 

Using these properties and random force properties, we can now express the 

memory kernels as autocorrelation of the random forces [22-25,32]. Indeed, 

multiplying Equation (8) by 𝑹𝑹𝛼𝛼𝑁𝑁(0), or by 𝒇𝒇𝛼𝛼𝑁𝑁(0), which is the same by the above 

mentioned second property of the random force, and taking the thermal average and 

using Equation (9), we will get: 

 

𝐾𝐾𝛼𝛼(𝑡𝑡) = 〈𝑹𝑹𝛼𝛼𝑁𝑁(𝑡𝑡)𝑹𝑹𝛼𝛼𝑁𝑁(0)〉 𝑚𝑚𝛼𝛼
2〈𝒗𝒗𝛼𝛼𝑁𝑁2 〉⁄                                 (11) 

or 

𝐾𝐾𝛼𝛼(𝑡𝑡) = 〈𝑹𝑹𝛼𝛼𝑁𝑁(𝑡𝑡)𝑹𝑹𝛼𝛼𝑁𝑁(0)〉 3𝑚𝑚𝛼𝛼𝑘𝑘𝐵𝐵𝑇𝑇⁄ ,                                (12) 

 

using expression for squared static velocities  〈𝒗𝒗𝛼𝛼𝑁𝑁2 〉 = 3𝑘𝑘𝐵𝐵𝑇𝑇 𝑚𝑚𝛼𝛼⁄ . 

In addition, it can be seen from Equation (9) that functions 𝜀𝜀𝛼𝛼(𝑡𝑡) and 𝐾𝐾𝛼𝛼(𝑡𝑡) are 

even. It is interesting to highlight that at zero time, the memory kernels represent a 

square of Einstein frequency, 𝐾𝐾𝛼𝛼(0) = 𝛺𝛺𝛼𝛼2 , a frequency, at which a tagged atom of 

species 𝛼𝛼 would vibrate on average if they were experiencing small oscillations in the 

potential wells generated by the neighbouring atoms when retained at their mean 

equilibrium positions around the tagged atom. Indeed, 𝐾𝐾𝛼𝛼(0) = 〈𝑹𝑹𝛼𝛼𝑖𝑖
2 〉

3𝑚𝑚𝛼𝛼𝑘𝑘B𝑘𝑘
= 𝑚𝑚𝛼𝛼〈�̇�𝒗𝛼𝛼𝑖𝑖

2 〉 
3𝑘𝑘B𝑘𝑘

, 

where �̇�𝒗𝛼𝛼𝑁𝑁 = 𝑑𝑑𝒗𝒗𝛼𝛼𝑖𝑖(𝜕𝜕)
𝑑𝑑𝜕𝜕

= −𝑚𝑚𝛼𝛼
−1𝛻𝛻𝛼𝛼𝑁𝑁𝑈𝑈  is acceleration and   𝑈𝑈 is potential energy. 
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Total Force Decomposition 

Total force decomposition involves two steps [24]:  

(1) The total force is represented of the sum: 𝒇𝒇𝛼𝛼𝑁𝑁(𝑡𝑡) = 𝒇𝒇𝛼𝛼𝑁𝑁
(𝐼𝐼)�𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡′)� +

𝒇𝒇𝛼𝛼𝑁𝑁
(𝐼𝐼𝐼𝐼)(𝑡𝑡), where the first summand 𝒇𝒇𝛼𝛼𝑁𝑁

(𝐼𝐼)�𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡′)� depends on the past history 

of velocity 𝒗𝒗𝛼𝛼𝑁𝑁 since 0 ≤ 𝑡𝑡′ ≤ 𝑡𝑡 while the second summand 𝒇𝒇𝛼𝛼𝑁𝑁
(𝐼𝐼𝐼𝐼)(𝑡𝑡) 

describes contribution which depends explicitly on dynamics of the other 

atoms at time 𝑡𝑡.  

(2) The functional 𝒇𝒇𝛼𝛼𝑁𝑁
(𝐼𝐼)�𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡′)� can be further decomposed into linear and non-

linear terms: 𝒇𝒇𝛼𝛼𝑁𝑁
(𝐼𝐼)�𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡′)� = 𝒇𝒇𝛼𝛼𝑁𝑁

(I,linear)�𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡′)� +

𝒇𝒇𝛼𝛼𝑁𝑁
(I,non−linear)�𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡′)�.  The linear term of the expansion is the systematic 

force of the generalized Langevin equation, i.e. the first summand in the 

Equation (8) (integral term of Equation (8)). While the sum of the non-linear 

term together with 𝒇𝒇𝛼𝛼𝑁𝑁
(II)(𝑡𝑡) uniquely defines the random force of the 

generalized Langevin equation, namely the random force is equal to 

𝑹𝑹𝛼𝛼𝑁𝑁(𝑡𝑡) = 𝒇𝒇𝛼𝛼𝑁𝑁
(𝐼𝐼,𝑛𝑛𝑡𝑡𝑛𝑛−𝑙𝑙𝑁𝑁𝑛𝑛𝑒𝑒𝑙𝑙𝑟𝑟)(𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡′), 0 ≤ 𝑡𝑡′ ≤ 𝑡𝑡) + 𝒇𝒇𝛼𝛼𝑁𝑁

(𝐼𝐼𝐼𝐼)(𝑡𝑡). 

 

Consequently, the total force can be decomposed as: 

𝒇𝒇𝛼𝛼𝑁𝑁(𝑡𝑡) = −𝑚𝑚𝛼𝛼 �𝐾𝐾𝛼𝛼(𝑡𝑡 − 𝑡𝑡′)𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡′)𝑑𝑑𝑡𝑡′
𝜕𝜕

0

+ 

+𝒇𝒇𝛼𝛼𝑁𝑁
(𝐼𝐼,non−linear)�𝒗𝒗𝛼𝛼𝑁𝑁(𝑡𝑡′)� + 𝒇𝒇𝛼𝛼𝑁𝑁

(II)(𝑡𝑡)     (13) 

 

Generalized Langevin Equations and Its Satellite Equations for the 
Interdiffusion Flux 

As stated by the Mori-Zwanzig formalism [22-25,32], we can write equations 

analogous to Equations (8) and (9) for any arbitrary chosen dynamical variable and its 

autocorrelation function, as we did for velocity. Our choice for further theoretical 

treatment in this chapter will be the interdiffusion flux 𝑱𝑱𝑐𝑐(𝑡𝑡),   due to its invariance to 

the choice of reference frame [31, 33, 34] as we will demonstrate below. Therefore, 
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the microscopic expression for the interdiffusion flux 𝑱𝑱𝑐𝑐(𝑡𝑡) of a binary liquid alloy at 

thermal equilibrium in fixed volume 𝑉𝑉 is equal to [31, 33, 34]: 

 

𝑱𝑱𝑐𝑐(𝑡𝑡)  =
𝑁𝑁
𝑉𝑉
𝑐𝑐1𝑐𝑐2𝐯𝐯�𝑐𝑐(𝑡𝑡)  =

𝑁𝑁
𝑉𝑉
𝑐𝑐1𝑐𝑐2[𝐯𝐯�1(𝑡𝑡)  − 𝐯𝐯�2(𝑡𝑡)] = 𝑐𝑐2𝑱𝑱1(𝑡𝑡)  − 𝑐𝑐1𝑱𝑱2(𝑡𝑡) ,               (14) 

 

where 𝑱𝑱1(𝑡𝑡) and 𝑱𝑱2(𝑡𝑡) are the fluxes of species 1 and 2 and 𝐯𝐯�1(𝑡𝑡) and 𝐯𝐯�2(𝑡𝑡) are 

the mean velocities of species 1 and 2, 𝐯𝐯�𝑐𝑐(𝑡𝑡)  ≡ 𝐯𝐯�12(𝑡𝑡). 

Now from Equation (14) we can see that the interdiffusion flux 𝑱𝑱𝑐𝑐(𝑡𝑡) is indeed 

does not depend on the choice of reference frame because it defines the fluxes of 

components 𝑱𝑱1(𝑡𝑡) and 𝑱𝑱2(𝑡𝑡) relative to each other. In the zero-momentum reference 

frame, we have 𝑐𝑐1𝑚𝑚1𝐯𝐯�1(𝑡𝑡) + 𝑐𝑐2𝑚𝑚2𝐯𝐯�2(𝑡𝑡) = 0 or 𝑚𝑚1 𝑱𝑱1(𝑡𝑡) + 𝑚𝑚2 𝑱𝑱2(𝑡𝑡) = 0, so that: 

 

𝑱𝑱𝑐𝑐(𝑡𝑡) =
𝑁𝑁
𝑉𝑉
𝑐𝑐1𝑐𝑐2𝐯𝐯�𝑐𝑐(𝑡𝑡) =

𝑚𝑚
𝑚𝑚2

𝑱𝑱1(𝑡𝑡) = −
𝑚𝑚
𝑚𝑚1

𝑱𝑱2(𝑡𝑡) =
𝑚𝑚
𝑚𝑚2𝑉𝑉

�𝒗𝒗1𝑁𝑁

𝑁𝑁1

𝑁𝑁=1

(𝑡𝑡) = −
𝑚𝑚
𝑚𝑚1𝑉𝑉

�𝒗𝒗2𝑁𝑁(𝑡𝑡)
𝑁𝑁2

𝑁𝑁=1

, (15) 

 

where 𝑚𝑚 = 𝑐𝑐1𝑚𝑚1 + 𝑐𝑐2𝑚𝑚2 is the total system mass per atom. Here, mass per atom 

carried by flux 𝑱𝑱1 is 𝑚𝑚1 and mass per atom carried by flux 𝑱𝑱2 is 𝑚𝑚2. Then, it follows 

from Equation (15) that the effective mass per atom carried by interdiffusion flux 𝑱𝑱𝑐𝑐 is 

equal to 𝑚𝑚𝑐𝑐 = 𝑚𝑚1𝑚𝑚2 𝑚𝑚⁄ . In other words, at thermal equilibrium the interdiffusion flux 

is produced by an effective system element containing 𝑁𝑁𝑐𝑐1𝑐𝑐2 identical particles of 

mass 𝑚𝑚𝑐𝑐 in the given volume 𝑉𝑉 with the mean velocity equal to zero and the thermal 

velocity (3𝑘𝑘B𝑇𝑇 𝑚𝑚𝑐𝑐⁄ )1 2⁄  from the Maxwell–Boltzmann distribution. Furthermore, on 

a basis of Equation (15) we can obtain  3𝑁𝑁𝑐𝑐1𝑐𝑐2 𝑘𝑘B𝑇𝑇 𝑚𝑚c⁄ = 𝑉𝑉2〈𝑱𝑱𝑐𝑐2〉 [31]. Hence, we 

can readily derive from an explicit analytical expression of the form 𝑉𝑉2〈𝑱𝑱𝑐𝑐2〉 =

3𝑁𝑁𝑐𝑐1𝑐𝑐2 𝑘𝑘B𝑇𝑇 𝑚𝑚c⁄ . This is analogous to the expression for the squared static velocities 

〈𝒗𝒗𝛼𝛼𝑁𝑁2 〉 derived in Section 2.1 above and confirmed by our MD simulations [31]. 

Therefore, the generalized Langevin equation for the interdiffusion flux 𝑱𝑱𝑐𝑐(𝑡𝑡) 

and the equation for its normalized autocorrelation function 𝜀𝜀𝑐𝑐(𝑡𝑡) =

𝑚𝑚𝑐𝑐 𝑉𝑉2〈𝑱𝑱𝑐𝑐(𝑡𝑡)𝑱𝑱𝑐𝑐(0)〉 3𝑁𝑁𝑐𝑐1𝑐𝑐2𝑘𝑘B𝑇𝑇⁄  (𝜀𝜀𝑐𝑐(0) = 1) can be presented as: 

https://en.wikipedia.org/wiki/Maxwell%E2%80%93Boltzmann_statistics
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𝑚𝑚𝑐𝑐𝑉𝑉
𝑑𝑑𝑱𝑱𝑐𝑐(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑭𝑭𝑐𝑐(𝑡𝑡) = −𝑚𝑚𝑐𝑐𝑉𝑉�𝐾𝐾𝑐𝑐(𝑡𝑡 − 𝑡𝑡′)𝑱𝑱𝑐𝑐(𝑡𝑡′)𝑑𝑑𝑡𝑡′
𝜕𝜕

0

+ 𝑹𝑹𝑐𝑐(𝑡𝑡),                    (16) 

 

𝑑𝑑𝜀𝜀𝑐𝑐(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −�𝐾𝐾c(𝑡𝑡 − 𝑡𝑡′)𝜀𝜀𝑐𝑐(𝑡𝑡′)𝑑𝑑𝑡𝑡′
𝜕𝜕

0

.                                           (17) 

 

In these equations, 𝑭𝑭𝑐𝑐(𝑡𝑡) and 𝑹𝑹𝑐𝑐(𝑡𝑡) are the total and random forces, respectively, 

acting on the mass 𝑚𝑚𝑐𝑐. Consequently, 𝑹𝑹𝑐𝑐(𝑡𝑡) has random force properties listed in 

Section 2.1 and similar to the properties of 𝑹𝑹α𝑁𝑁(𝑡𝑡), namely:  

(i) 〈𝑹𝑹𝑐𝑐(𝑡𝑡)〉 = 0,  

(ii) 𝑭𝑭𝑐𝑐(0) = 𝑹𝑹𝑐𝑐(0)  

(iii) 〈𝑹𝑹𝑐𝑐(𝑡𝑡)𝑱𝑱𝑐𝑐(0)〉 = 0, and  

(iv) 𝐾𝐾𝑐𝑐(𝑡𝑡) = 〈𝑹𝑹𝑐𝑐(𝑡𝑡)𝑹𝑹𝑐𝑐(0)〉 𝑚𝑚𝑐𝑐
2𝑉𝑉2〈𝑱𝑱𝑐𝑐2〉⁄  = 〈𝑹𝑹𝑐𝑐(𝑡𝑡)𝑹𝑹𝑐𝑐(0)〉 3𝑁𝑁𝑐𝑐1𝑐𝑐2𝑚𝑚c𝑘𝑘B𝑇𝑇⁄ ). 

 

The memory kernel 𝐾𝐾𝑐𝑐(𝑡𝑡) describes the evolution of the systematic force acting 

on the mass 𝑚𝑚𝑐𝑐. As we can see from Equation (17) both autocorrelation functions 𝜀𝜀𝑐𝑐(𝑡𝑡) 

and 𝐾𝐾𝑐𝑐(𝑡𝑡) are even functions of time. Furthermore, at initial time the memory kernel 

can be expressed via corresponding effective Einstein frequency  𝛺𝛺𝑐𝑐: 𝐾𝐾𝑐𝑐(0) = 𝛺𝛺𝑐𝑐2 =
〈𝑹𝑹𝑐𝑐2〉

3𝑚𝑚𝑐𝑐𝑘𝑘𝐵𝐵𝑘𝑘
= 𝑚𝑚𝑐𝑐𝑉𝑉2〈�̇�𝑱𝑐𝑐2〉

3𝑁𝑁𝑐𝑐1𝑐𝑐2𝑘𝑘𝐵𝐵𝑘𝑘
, where �̇�𝑱𝑐𝑐 = 𝑑𝑑𝑱𝑱𝑐𝑐(𝜕𝜕)

𝑑𝑑𝜕𝜕
= (−1)𝛼𝛼𝑚𝑚𝑐𝑐

−1 ∑ 𝛻𝛻𝛼𝛼𝑁𝑁𝑈𝑈
𝑁𝑁𝛼𝛼
𝑁𝑁=1 . 

 

Alternative Expression for Interdiffusion Flux via Single-Particle Memory 
Kernels and Random Forces 

Alternatively combining Langevin equation for velocity Equation (8) and 

interdiffusion flux definition Equations (14) and (15) we will arrive to more significant 

expression for 𝑱𝑱𝑐𝑐(𝑡𝑡), because it includes the single-particle memory kernels, 𝐾𝐾1(𝑡𝑡) and 

𝐾𝐾2(𝑡𝑡), and random forces, 𝑹𝑹1𝑁𝑁(𝑡𝑡) and 𝑹𝑹2𝑗𝑗(𝑡𝑡): 

 



 

Chapter 5: Diffusion Kinetics in Binary Liquid Alloys with Ordering and Demixing Tendencies 79 

𝑚𝑚𝑐𝑐𝑉𝑉
𝑑𝑑𝑱𝑱𝑐𝑐(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑭𝑭𝑐𝑐(𝑡𝑡) =

= −𝑚𝑚𝑐𝑐𝑉𝑉� �𝑐𝑐2
𝑚𝑚2

𝑚𝑚
𝐾𝐾1(𝑡𝑡 − 𝑡𝑡′) + 𝑐𝑐1

𝑚𝑚1

𝑚𝑚
𝐾𝐾2(𝑡𝑡 − 𝑡𝑡′)� 𝑱𝑱𝑐𝑐(𝑡𝑡′)𝑑𝑑𝑡𝑡′

𝜕𝜕

0

+ 𝑹𝑹12(𝑡𝑡). (18) 

 

where force 𝑹𝑹12(𝑡𝑡) represents the contribution to the total force associated with 

interdiffusion flux 𝑭𝑭𝑐𝑐(𝑡𝑡) due to the difference in the average random accelerations of 

atoms of species 1 and 2, 𝑹𝑹�1(𝜕𝜕)
𝑚𝑚1

 and  𝑹𝑹
�2(𝜕𝜕)
𝑚𝑚2

 respectively Equation (19), so that: 

 

𝑹𝑹12(𝑡𝑡) = 𝑁𝑁𝑐𝑐1𝑐𝑐2𝑚𝑚𝑐𝑐 �
𝑹𝑹�1(𝑡𝑡)
𝑚𝑚1

−
𝑹𝑹�2(𝑡𝑡)
𝑚𝑚2

� ,                                              (19) 

 

where 

 

𝑹𝑹�1(𝑡𝑡) =
1
𝑁𝑁1
�𝑹𝑹1𝑁𝑁(𝑡𝑡)
𝑁𝑁1

𝑁𝑁=1

,               𝑹𝑹�2(𝑡𝑡) =
1
𝑁𝑁2

�𝑹𝑹2𝑗𝑗(𝑡𝑡)
𝑁𝑁2

𝑗𝑗=1

                           (20) 

 

are the average random forces acting on atoms of species 1 and 2 at time 𝑡𝑡, 

respectively. It follows from Equation (18) that 𝑭𝑭𝑐𝑐(0) = 𝑹𝑹12(0) = 𝑹𝑹𝑐𝑐(0) and 

〈𝑹𝑹12(𝑡𝑡)〉 = 0. It should be highlighted that 𝑹𝑹12(𝑡𝑡) is not truly a random force by 

definition, but the difference between the random forces. 

Since Equations (16) and (18) both describe the total force acting on the mass 

carried by the interdiffusion flux 𝑱𝑱𝑐𝑐  we can equate them and divide by the effective 

mass 𝑚𝑚𝑐𝑐: 

 

𝑉𝑉� �𝑐𝑐2
𝑚𝑚2

𝑚𝑚
𝐾𝐾1(𝑡𝑡 − 𝑡𝑡′) + 𝑐𝑐1

𝑚𝑚1

𝑚𝑚
𝐾𝐾2(𝑡𝑡 − 𝑡𝑡′) − 𝐾𝐾𝑐𝑐(𝑡𝑡 − 𝑡𝑡′)� 𝑱𝑱𝑐𝑐(𝑡𝑡′)𝑑𝑑𝑡𝑡′

𝜕𝜕

0

=
𝑹𝑹12(𝑡𝑡) − 𝑹𝑹𝑐𝑐(𝑡𝑡)

𝑚𝑚𝑐𝑐
.  (21) 
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Now, after multiplying both sides of Equation (21) by 𝑱𝑱𝑐𝑐(0) and taking the 

thermal average, we arrive to: 

 

��𝑐𝑐2
𝑚𝑚2

𝑚𝑚
𝐾𝐾1(𝑡𝑡 − 𝑡𝑡′) + 𝑐𝑐1

𝑚𝑚1

𝑚𝑚
𝐾𝐾2(𝑡𝑡 − 𝑡𝑡′) − 𝐾𝐾𝑐𝑐(𝑡𝑡 − 𝑡𝑡′)� 𝜀𝜀𝑐𝑐(𝑡𝑡′)𝑑𝑑𝑡𝑡′

𝜕𝜕

0

=
𝑃𝑃12(𝑡𝑡)
𝑘𝑘B𝑇𝑇

,        (22) 

 

where 

 

𝑃𝑃12(𝑡𝑡) =
𝑉𝑉

3𝑁𝑁𝑐𝑐1𝑐𝑐2
〈𝑹𝑹12(𝑡𝑡)𝑱𝑱𝑐𝑐(0)〉.                                                     (23) 

 

corresponds to the correlations between fluctuations of 𝑹𝑹12(𝑡𝑡) and 𝑱𝑱𝑐𝑐(0) at 𝑡𝑡 > 0. 

 

Frequency-Dependent Diffusion Coefficients in a Binary Liquid Alloy 

Now, taking the one-sided Fourier transforms of Equations (9), (17) and (22) 

and combining them, in frequency domain we will get: 

 

𝐿𝐿�𝑐𝑐𝑐𝑐(𝜔𝜔) =
𝑚𝑚2𝐷𝐷1(𝜔𝜔)𝐷𝐷2(𝜔𝜔)

𝑐𝑐1𝑚𝑚1
2𝐷𝐷1(𝜔𝜔) + 𝑐𝑐2𝑚𝑚2

2𝐷𝐷2(𝜔𝜔) �1 +
𝑊𝑊12(𝜔𝜔)
𝑘𝑘B𝑇𝑇

� .                           (24) 

 

where 

 

𝐷𝐷1(𝜔𝜔) =
𝑘𝑘B𝑇𝑇
𝑚𝑚1

� 𝜀𝜀1(𝑡𝑡)𝑒𝑒−𝑁𝑁𝑖𝑖𝜕𝜕𝑑𝑑𝑡𝑡
∞

0

,                                              (25) 

 

𝐷𝐷2(𝜔𝜔) =
𝑘𝑘B𝑇𝑇
𝑚𝑚2

� 𝜀𝜀2(𝑡𝑡)𝑒𝑒−𝑁𝑁𝑖𝑖𝜕𝜕𝑑𝑑𝑡𝑡
∞

0

,                                             (26) 
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𝐿𝐿�𝑐𝑐𝑐𝑐(𝜔𝜔) =
𝑘𝑘B𝑇𝑇
𝑚𝑚𝑐𝑐

� 𝜀𝜀𝑐𝑐(𝑡𝑡)𝑒𝑒−𝑁𝑁𝑖𝑖𝜕𝜕𝑑𝑑𝑡𝑡
∞

0

,                                              (27) 

 

are the frequency-dependent diffusion coefficients in a binary liquid alloy 

represented via related velocity autocorrelation functions consistent with the basic 

theorem for linear responses [21-25,32,35]. 

 

𝑊𝑊12(𝜔𝜔) = � 𝑃𝑃12(𝑡𝑡)𝑒𝑒−𝑁𝑁𝑖𝑖𝜕𝜕𝑑𝑑𝑡𝑡
∞

0

=
𝑉𝑉

3𝑁𝑁𝑐𝑐1𝑐𝑐2
�〈𝑹𝑹12(𝑡𝑡)𝑱𝑱𝑐𝑐(0)〉𝑒𝑒−𝑁𝑁𝑖𝑖𝜕𝜕𝑑𝑑𝑡𝑡
∞

0

.                     (28) 

 

Correlations Between Fluctuations of 𝑹𝑹𝑹𝑹𝑹𝑹(𝒕𝒕) and 𝑱𝑱𝒄𝒄(𝟎𝟎) 

In short time limit 𝑡𝑡 → 0 the value of 𝑃𝑃12(𝑡𝑡) can be approximated via the first 

derivative of 𝑃𝑃12(𝑡𝑡) evaluated 𝑡𝑡 = 0 [36], as  

 

                                  
�̇�𝑃12(0)
𝑘𝑘𝐵𝐵𝑇𝑇

=
1
𝑘𝑘B𝑇𝑇

𝑑𝑑𝑃𝑃12(𝑡𝑡)
𝑑𝑑𝑡𝑡

�
𝜕𝜕=0

= 𝑐𝑐2
𝑚𝑚2

𝑚𝑚
𝛺𝛺12 + 𝑐𝑐1

𝑚𝑚1

𝑚𝑚
𝛺𝛺22 − 𝛺𝛺𝑐𝑐2,       (29) 

 

Due to common MD simulation configurations of interatomic interactions, in the 

short time limit 𝑡𝑡 → 0, 𝑃𝑃12(𝑡𝑡) can be estimated as [36] 

 

𝑃𝑃12(𝑡𝑡)
𝑘𝑘B𝑇𝑇

≈ 𝜎𝜎12𝛺𝛺𝑐𝑐2𝑡𝑡,                                                             (30) 

 

where 

 

𝜎𝜎12 =
𝑐𝑐2𝑚𝑚2𝛺𝛺12 + 𝑐𝑐1𝑚𝑚1𝛺𝛺22

𝑚𝑚𝛺𝛺𝑐𝑐2
− 1                                                 (31) 
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is the dimensionless factor which defines the initial sign of 𝑃𝑃12(𝑡𝑡) as the 

correlation between 𝑹𝑹12(𝑡𝑡) and 𝑱𝑱𝑐𝑐(0) starts to develop with time. As a result, 𝜎𝜎12 < 0 

and 𝜎𝜎12 > 0 indicate that 𝑹𝑹12(𝑡𝑡) tends to initially create with 𝑱𝑱𝑐𝑐(0) obtuse and acute 

angles, respectively as it is shown in Figure 1 representing the initial instant of time 

defined by 𝜎𝜎12. 

The behaviour 𝜎𝜎12 < 0 and 𝑊𝑊12 < 0 is expected for a binary melt exhibiting 

chemical ordering in the normal liquid state. Therefore an the initial angle in short time 

limit 𝑡𝑡 → 0 for 𝜎𝜎12 < 0 (obtuse angle) between 𝑹𝑹12(𝑡𝑡) and 𝑱𝑱𝑐𝑐(0) should remain 

obtuse, ensuring a negative value of 𝑊𝑊12 which is expected for these type of melts 

accounting for their mixing tendency [36]. However, during the transition between the 

normal liquid state and the undercooled liquid state the angle between 𝑹𝑹12(𝑡𝑡) and 

𝑱𝑱𝑐𝑐(0) may principally transform from and obtuse angle into an acute angle. This can 

be caused by the short-range atomic ordering which becomes unfavourable in the 

undercooled liquid state of the binary melt. This change advocates behaviour of the 

undercooled binary mixing melt towards a more thermodynamically stable state. 

Consequently, we can observe 𝑊𝑊12 > 0 in the undercooled liquid state of a binary 

mixing melt exhibiting chemical ordering. Therefore, we may conclude that 𝜎𝜎12 < 0 

and 𝑊𝑊12 < 0 can be considered as necessary conditions for a binary mixing melt 

exhibiting chemical ordering to be in thermodynamic equilibrium. In addition, a 

relative change in 𝑊𝑊12 can be used to characterize variation in dynamical stability of 

atomic ordering in a binary mixing melt upon undercooling. 

 

a)  b)  
Figure 1: Evaluation of correlation between fluctuations of 𝐑𝐑12(t) and 𝐉𝐉c(0) as a) the 

time average over correlation length W12 and b) in short time limit t → 0  for P12 (develops 

over time) and its initial instant σ12 
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5.2.3 Results and Discussion 

 

Frequency-Dependent Mass Transport Coefficients in the Hydrodynamic 
Limit 

The most practical case for frequency-dependent mass transport coefficients is 

when  𝜔𝜔 → 0, i.e. 𝑡𝑡 → ∞, so called case of the hydrodynamic limit. In other words, we 

consequently leave out the frequency dependence in the notation. In this case Equation 

(24) for the Onsager coefficient 𝐿𝐿�𝑐𝑐𝑐𝑐  becomes  

 

𝐿𝐿�𝑐𝑐𝑐𝑐 = 𝑚𝑚2𝐷𝐷1𝐷𝐷2
𝑐𝑐1𝑚𝑚1

2𝐷𝐷1+𝑐𝑐2𝑚𝑚2
2𝐷𝐷2

�1 + 𝑊𝑊12
𝑘𝑘B𝑘𝑘

�                                              (32) 

 

and can be written with a sequence of three nested equations: 

 

𝐿𝐿�𝑐𝑐𝑐𝑐 = 𝑆𝑆(𝑐𝑐2𝐷𝐷1 + 𝑐𝑐1𝐷𝐷2),                                                           (33) 

 

where 

 

𝑆𝑆 = 𝑆𝑆0 �1 +
𝑊𝑊12

𝑘𝑘B𝑇𝑇
�                                                                  (34) 

 

with 

 

𝑆𝑆0 =
𝑚𝑚2𝐷𝐷1𝐷𝐷2

𝑚𝑚2𝐷𝐷1𝐷𝐷2 + 𝑐𝑐1𝑐𝑐2(𝑚𝑚1𝐷𝐷1 − 𝑚𝑚2𝐷𝐷2)2 .                                             (35) 

 

From the obtained equations for pure components, i.e. for 𝑐𝑐1 = 0 or 𝑐𝑐2 = 0, we 

get 𝑆𝑆0 = 1 as follows from Equation (35) and 𝑊𝑊12 = 0 and 𝑆𝑆 = 1, since 𝑹𝑹12 = 0 , as 
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follows from Equations (15), (19), (23) and (28). Also from Equation (33) on the limit 

when 𝑐𝑐1 → 0, then 𝐿𝐿�𝑐𝑐𝑐𝑐 → 𝐷𝐷1  and if 𝑐𝑐2 → 0, then 𝐿𝐿�𝑐𝑐𝑐𝑐 → 𝐷𝐷2. Moreover, in these cases 

the interdiffusion coefficient 𝐷𝐷𝑐𝑐 → 𝐿𝐿�𝑐𝑐𝑐𝑐, because Φ →1 (Equation (6)). Hence, within 

mentioned limits the coefficient of interdiffusion is approaching the coefficient of self-

diffusion of the minority species, so that 𝐷𝐷𝑐𝑐 → 𝐿𝐿�𝑐𝑐𝑐𝑐 → 𝐷𝐷1 when 𝑐𝑐1 → 0 and 𝐷𝐷𝑐𝑐 → 𝐿𝐿�𝑐𝑐𝑐𝑐 →

𝐷𝐷2 when 𝑐𝑐2 → 0. 

 

Decomposition of the Correction Factor 

In addition, further investigation of Equations (32)-(35) provides new insight 

into a relation of self and collective diffusion in binary melts. It follows from Equation 

(28) that 𝑊𝑊12 ≡ 𝑊𝑊12(0) is associated to the average amount of generated–dissipated 

energy owed to the correspondences between fluctuations of 𝑹𝑹12 and 𝑱𝑱𝑐𝑐. Therefore in 

thermal equilibrium, the absolute value of 𝑊𝑊12 cannot surpass the characteristic 

thermal energy, 𝑘𝑘B𝑇𝑇 , by equipartition law [36], namely: |𝑊𝑊12| ≤ 𝑘𝑘B𝑇𝑇.  

Next, it follows from Equation (35) that for all binary alloys: 0 < 𝑆𝑆0 ≤ 1. This 

means that for the correction factor 𝑆𝑆: 0 ≤ 𝑆𝑆 ≤ 2𝑆𝑆0 or simply, 0 ≤ 𝑆𝑆 ≤ 2. 

Consequently, the correction factor 𝑆𝑆 appears to break down into the product of two 

factors, see Equation (34). In binary melts for which a greater tracer diffusion 

coefficient is carried by the species with greater mass, it can become significant, i.e. 

substantially less than unity. 

The first factor in Equation (34) 𝑆𝑆0 can be also be written in form of the ratio of 

the self-diffusion coefficients 𝐷𝐷1 𝐷𝐷2⁄ , the ratio of the atomic masses 𝑚𝑚1 𝑚𝑚2⁄ , and the 

composition 𝑐𝑐1 (or 𝑐𝑐2). Indeed, if we divide numerator and denominator of Equation 

(35) by 𝑚𝑚2𝐷𝐷1𝐷𝐷2  and rearrange we will get: 
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𝑆𝑆0 =
1

1 + 𝑐𝑐1𝑐𝑐2
𝑚𝑚2𝐷𝐷1𝐷𝐷2

(𝑚𝑚1𝐷𝐷1 − 𝑚𝑚2𝐷𝐷2)2
= 

=
1

1 + 𝑐𝑐1𝑐𝑐2
𝑚𝑚2𝐷𝐷1𝐷𝐷2

�𝑚𝑚1
2𝐷𝐷12 − 2𝑚𝑚1𝐷𝐷1𝑚𝑚2𝐷𝐷2 + 𝑚𝑚2

2𝐷𝐷22�
= 

=
1

1 + 𝑐𝑐1𝑐𝑐2 �
𝑚𝑚1

2

𝑚𝑚2
𝐷𝐷1
𝐷𝐷2

− 2𝑚𝑚1𝑚𝑚2
𝑚𝑚2 + 𝑚𝑚2

2

𝑚𝑚2
𝐷𝐷2
𝐷𝐷1
�

                                (36) 

 

where 𝑚𝑚 = 𝑚𝑚1𝑐𝑐1 + 𝑚𝑚2𝑐𝑐2. 

 

Meanwhile, the second factor in the Equation (34), (1 + 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄ ) is 

responsible for a collective energy generation-dissipation effect as a result of the 

correlations between fluctuations of the interdiffusion flux 𝑱𝑱𝑐𝑐 and the force 𝑹𝑹12, 

introduced by the average random accelerations 𝑹𝑹�𝛼𝛼 as stated by Equations (19-20). 

For binary mixing melts showing tendency of ordering (Ni-Al, Ni-Zr) the angle 

between vectors 𝑹𝑹12(𝑡𝑡) and 𝑱𝑱𝑐𝑐(0) should be obtuse as predicted in Section 2.7. In other 

words, during fluctuations the force 𝑹𝑹12  effectively supresses the interdiffusion flux’s 

deviation from equilibrium. Accordingly, in this case 𝑊𝑊12 is negative as well as the 

enthalpy of formation. According to Equation (34), when 𝑊𝑊12 < 0, we get 𝑆𝑆 < 1. 

On the other hand, for binary melts with demixing tendency (Cu-Ag), it is 

predicted that the angle between 𝑹𝑹12(𝑡𝑡) and 𝑱𝑱𝑐𝑐(0), should be acute. In this case during 

fluctuations 𝑹𝑹12 effectively stimulates interdiffusion flux deviation from equilibrium. 

Consequently, in this case we can predict that 𝑊𝑊12 is positive. For 𝑊𝑊12 > 0, 𝑆𝑆 > 1 

according to Equation (34). 

Hence, in general we can conclude 𝑊𝑊12 is connected with the free energy of 

formation of binary melts. Furthermore, 𝑊𝑊12 can be used to introduce the concept of 

random of a binary liquid random alloy, where 𝑊𝑊12 = 0, hence 𝑆𝑆 = 𝑆𝑆0 ≤ 1. 
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Composition Dependence of 𝑺𝑺, 𝑺𝑺𝟎𝟎 and 𝑾𝑾𝑹𝑹𝑹𝑹 𝒌𝒌𝑩𝑩𝑻𝑻⁄  for Ni-Al, Ni-Zr and Cu-Ag 
Systems: Molecular Dynamics, Theoretical Predictions and 
Experimental Data 

For illustration, we show in Figures 2-4 the composition dependencies of 𝑆𝑆, 𝑆𝑆0 

and 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  for the different types of systems, namely: with an ordering tendency 

(a) Ni-Al and (b) Ni-Zr and with a demixing tendency (c) Cu-Ag, respectively.  

The melts are MD models of their corresponding systems, calculated at various 

compositions and temperatures range from 1000 – 2200 K using the embedded-atom 

method (EAM) potential developed in [37]. For calculation of 𝑆𝑆 and 𝑆𝑆0 based on 

Equations (33) and (35), respectively, we made use of our MD data for 𝐿𝐿�𝑐𝑐𝑐𝑐, 𝐷𝐷1 and 𝐷𝐷2. 

Meanwhile, 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  was calculated based on Equation (34) using the results for 𝑆𝑆 

and 𝑆𝑆0, i.e.: 𝑊𝑊12
𝑘𝑘B𝑘𝑘

= 𝑃𝑃
𝑃𝑃0
− 1. 

The Onsager coefficient 𝐿𝐿�𝑐𝑐𝑐𝑐 was evaluated within the framework of the Green-

Kubo formalism [21,32,35,38] by means of the time integral of 𝜀𝜀𝑐𝑐(𝑡𝑡) (see Equation 

(27) at 𝜔𝜔 = 0), namely 𝐿𝐿�𝑐𝑐𝑐𝑐 = 𝑘𝑘B𝑘𝑘
𝑚𝑚𝑐𝑐

lim
𝜕𝜕→∞

∫ 〈𝑱𝑱𝑐𝑐(𝜕𝜕′)𝑱𝑱𝑐𝑐(0)〉
〈𝑱𝑱𝑐𝑐2〉

𝑑𝑑𝑡𝑡′𝜕𝜕
0  . 

The self-diffusion coefficients of Ni and Al atoms [39], Ni and Zr atoms in [36] 

and Cu and Ag atoms [43] were calculated, according to the well-known Einstein 

relation [21,32,35], as: 𝐷𝐷𝛼𝛼 = lim
𝜕𝜕→∞

〈 1𝑁𝑁𝛼𝛼
∑ ∆𝒓𝒓𝛼𝛼𝑖𝑖

2 (𝜕𝜕)𝑁𝑁𝛼𝛼
𝑖𝑖=1 〉

6𝜕𝜕
, where ∆𝒓𝒓𝛼𝛼𝑁𝑁(𝑡𝑡) = 𝒓𝒓𝛼𝛼𝑁𝑁(𝑡𝑡) − 𝒓𝒓𝛼𝛼𝑁𝑁(0) 

represent the time-displacements of single atoms of species 1 (𝑖𝑖 = 1 …𝑁𝑁1) and 2 (𝑗𝑗 =

1 …𝑁𝑁2), respectively (we assume here that Ni, Cu ≡ 1 and Al, Zr, Ag ≡ 2). 

We took into consideration seven alloy compositions in Ni-Al system for 

example: Ni87.5Al12.5, Ni75Al25, Ni62.5Al37.5, Ni50Al50, Ni37.5Al62.5, Ni25Al75 and 

Ni12.5Al87.5. We also considered seven alloy compositions across the Ni-Zr and Cu-Ag 

systems correspondingly in the similar manner. Calculations were performed in 3D 

simulation cells with periodic boundary conditions in all three directions using 

microcanonical ensemble dynamics at zero pressure. The simulation cells consist of 

about 4000 atoms (for different models the number of atoms varied slightly within the 

range 4000 – 4394). For numerical integration of the equations of motion we apply the 

Verlet algorithm in the velocity form [40] with a time step ∆t=1.5 fs. To ensure the 

zero-momentum reference frame, we conserved the total momentum of the model 

systems at a zero value. To obtain the statistical time average at thermal equilibrium 
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of the autocorrelation function of the interdiffusion flux and the mean-squared 

displacements of atoms, we use about 1.8×107 time origins. 

 

 
                  (a)                (b) 

 
(c) 

 

Figure 2: Composition dependence of the correction factor S = L�cc
c2D1+c1D2

    

for (a) Ni-Al melts, (b) Ni-Zr melts and (c) Cu-Ag melts at various temperatures 

 

As it is proposed by theoretical treatment above for a binary mixing melt with 

tendency of ordering, the correction factor 𝑆𝑆 is found to be less than unity (𝑊𝑊12 < 0) 

across the whole composition range of the MD models of Ni-Al binary melts (see Fig. 
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2a). The correction factor 𝑆𝑆 of Ni-Zr binary melts (see Fig. 2b) shows analogous trends 

to those of Ni-Al melts at high temperatures i.e. the normal liquid state. In agreement 

with the approach that, upon increasing concentration of the minority species toward 

the equi-atomic composition, the kinetics of collective diffusion in mixing binary 

liquid alloys slow down, minima of 𝑆𝑆 in the composition dependence of Ni-Al and Ni-

Zr melts are found to be of similar position and depth.  

Confirming our theoretical analysis, the composition dependence of the 

correction factor 𝑆𝑆 of Cu-Ag binary melts (see Fig. 2c), serving as an example for a 

binary system with demixing tendency, clearly shows a reversed behaviour of the 

graph, compared to Figs. 2a and 2b. The value of 𝑆𝑆 ≥ 1 over the whole composition 

range, reaching its maximum of 1.91 for the composition Cu50Ag50 at a temperature of 

1000 K. The maximum sort of plateaus towards the Ag-rich side of the Cu-Ag alloys 

ranging from Cu50Ag50 to Cu12.5Ag87.5. 

The composition dependence of 𝑆𝑆0 of Ni-Zr melts (see Fig. 3b), despite also 

showcasing a system with mixing tendency, looks inarguably different to the Ni-Al 

melt (see Fig. 3a). In the case of Ni and Zr, the larger self-diffusion coefficient is 

carried by the lighter Ni species (𝑚𝑚Ni 𝑚𝑚Zr⁄ ≈ 58.69/91.22 ≈ 0.64). This is in 

contrast to the situation of the Ni-Al melt, where the larger self-diffusion coefficient 

is also carried by the Ni species, which in this configuration is the heavier (𝑚𝑚Ni 𝑚𝑚Al⁄ ≈

58.69/26.98 ≈ 2.18). The ratio of the masses of Ni and Zr (𝑚𝑚Ni 𝑚𝑚Zr⁄ ≈ 0.64) 

effectively damp the single-particle kinetic effect due to the ratio 𝐷𝐷Ni 𝐷𝐷Zr⁄  above unity 

(varying between 1.2 and 1.8 at high temperatures [36]) resulting in 𝑆𝑆0 ≈ 1 covering 

the whole composition range. In the case of the configuration of Ni-Al melts, the mass 

ratio 𝑚𝑚Ni 𝑚𝑚Al⁄ ≈ 2.18 magnifies the single-particle kinetic effects due to an increase 

of the ratio 𝐷𝐷Ni 𝐷𝐷Al⁄  above unity even further, resulting in a reduction of 𝑆𝑆0 below 

unity at all compositions (see Fig. 3a). The minimum of 𝑆𝑆0 is reached with a value of 

0.85 for the models of Ni-Al melts in the normal liquid state in the vicinity of equi-

atomic composition. For the Ni-rich models in Ni-Zr melts (see Fig. 3b) a considerable 

drop of 𝑆𝑆0 can be seen upon undercooling. This observation is the result of the 

increasing value of the ratio of the self-diffusion coefficients (𝐷𝐷Ni 𝐷𝐷Zr⁄ ) for the model 

of Ni87.5Zr12.5 melt at 1200 K [36]. This increase overcomes the damping effect of the 

mass ratio 𝑚𝑚Ni 𝑚𝑚Zr⁄ ≈ 0.64 and therefore producing a sizable drop of 𝑆𝑆0 as can be 

seen on Figure 3b. 
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                     (a)

 

                      (b)

 
                                                                 (c) 

 

Figure 3: Composition dependence of S0 = m2D1D2
m2D1D2+c1c2(m1D1−m2D2)2 

 for (a) Ni-Al melts, 
(b) Ni-Zr melts and (c) Cu-Ag melts at various temperatures 

 

According to Fig. 4a it can be seen that for Al-rich alloy compositions with 𝑐𝑐Ni ≲

0.125, the term |𝑊𝑊12| 𝑘𝑘B𝑇𝑇⁄ ≲ 0.03, meaning that the correction factor 𝑆𝑆 is less than 

3% smaller than 𝑆𝑆0 (see Figs. 2a and 3a respectively). Thus, an Al-rich liquid alloy 

(with 𝑐𝑐Ni ≲ 0.125) of the model system can be considered as a good approximation 

for the suggested concept of a binary liquid random alloy. Consequently, by assuming 

that a comparable condition 𝑆𝑆 ≈ 𝑆𝑆0 is satisfied for real Al-rich liquid alloys of Ni-Al 

binary system, recent experimental data on the correction factor in Al-rich Ni-Al melts 

[17] can be analysed by making use of Equations (33) and (35).  



 

90 Chapter 5: Diffusion Kinetics in Binary Liquid Alloys with Ordering and Demixing Tendencies 

In the models of Ni-Zr melts the trend of the composition dependence of 𝑆𝑆 

follows, shifted up by one, the trend of the composition dependence of 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄ . This 

is in contrast to the models of Ni-Al melts, for which the composition dependence of 

𝑆𝑆0 and (1 + 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄ ) as contribution of 𝑆𝑆 are found to be similar. During 

undercooling of the Ni-Zr melts the effect of 𝑆𝑆0 becomes notable. The main difference 

however, upon undercooling the sign of 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  becomes positive for the Ni-rich 

and Zr-rich Ni-Zr melts (see Fig. 4b). The strongest increase of 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  upon 

undercooling is observed in the models of Ni-rich Ni-Zr melts (see Fig. 4b), where 

𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  reaches 0.48 and 0.08, respectively, in the models of Ni87.5Zr12.5 and 

Ni12.5Zr87.5 melts at 1200 K just before the onset of their crystallization at 1150 K. This 

behaviour is interpreted as an expression of emerging heterogeneity in atomic 

dynamics of melt due to entering the energy landscape controlled regime upon 

undercooling derived from a correlated behaviour of 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  and the ratio 𝐷𝐷Ni 𝐷𝐷Zr⁄ .  

Though, a noteworthy decoupling of the self-diffusion coefficients of Ni and Zr 

in the models of Ni-rich Ni-Zr melts upon undercooling marks in a decrease of factor 

𝑆𝑆0 (see Fig. 3b) that accounts for the contribution into the correction factor 𝑆𝑆 due to 

single-particle kinetic effects. At the same time, the contribution into 𝑆𝑆 due to a 

collective energy generation-dissipation effect accounted by 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  is amplified 

upon transition to diffusion behaviour approaching the energy landscape controlled 

regime. The variation of the latter contribution significantly controls the variation of 

the former contribution causing substantial increase in the correction factor 𝑆𝑆 above 

unity for the models of Ni-rich Ni-Zr melts upon undercooling. 

As for a binary system with de-mixing tendency, according to the results of our 

MD simulations of Cu-Ag melts [43] with the EAM potential developed in [41] , the 

behaviour of 𝑊𝑊12 > 0 over the whole composition range (see Fig. 4c) as in contrast to 

𝑊𝑊12 < 0 for systems with mixing tendency like the melts of Ni-Al and Ni-Zr, Figs. 1a 

and 1b. Moreover, the value of 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  nears practically unity in the vicinity of the 

eutectic point of the model system with demixing tendency. Consequently, the 

correction factor 𝑆𝑆 in the vicinity of the eutectic point is expected to be slightly less 

than two in real Cu-Ag melts with a reasonable approximation that  DCu 𝐷𝐷𝐴𝐴g⁄ ~1 

(recall that 𝑚𝑚Cu 𝑚𝑚Ag⁄ ≈ 63.55/107.87 ≈ 0.59). 
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                     (a) 

 

                    (b) 

 
                                                               (c)  

 

Figure 4: Composition dependence of    W12
kBT

= S
S0
− 1 for (a) Ni-Al melts, (b) Ni-Zr 

melts and (c) Cu-Ag melts at various temperatures 

 

To the best of our knowledge, the shown experimental data are the only available 

data on the correction factor in binary melts available in literature at the present time. 

The self-diffusion coefficients of Al, 𝐷𝐷Al in Ni-Al cannot be measured [12,13,17] 

because of the very low coherent scattering cross section of Al, as well as lack of 

suitable isotopes. Therefore it was first assumed in [17] that 𝐷𝐷Al ≈ 𝐷𝐷Ni. Next, with this 

assumption a quantity 𝑆𝑆1 = 𝐿𝐿�𝑐𝑐𝑐𝑐 𝐷𝐷1⁄  (we use our notation) was assessed on account of 

experimental measurements [17]. In fact, as it can be seen from Equation (33), 𝑆𝑆1 = 𝑆𝑆 
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if 𝐷𝐷1 = 𝐷𝐷2. Though, Equations (33) and (35) propose (assuming 𝑆𝑆 ≈ 𝑆𝑆0) that both 

𝑆𝑆1 = 𝑆𝑆(𝑐𝑐2 + 𝑐𝑐1 𝐷𝐷2 𝐷𝐷1⁄ ) and 𝑆𝑆 may differ noticeably when the ratio 𝐷𝐷1 𝐷𝐷2⁄  reaches a 

value above unity (note that for Ni-Al system: 𝑚𝑚1 𝑚𝑚2⁄ ≈ 58.71/26.98 ≈ 2.18), even 

already for sufficiently small values of 𝑐𝑐1 (Al-rich alloy compositions). In Fig. 5, 

alongside experimental data for 𝑆𝑆1 (at 1173 K) [17], we present the predicted 

composition dependence based on Equations (33) and (35) in Al-rich Ni-Al melts for: 

(i) 𝑆𝑆 at fixed 𝐷𝐷1 𝐷𝐷2⁄ = 1, and (ii) 𝑆𝑆 and 𝑆𝑆1 at fixed 𝐷𝐷1 𝐷𝐷2⁄ = 2. One can clearly see in 

Fig. 5, a good agreement of the predicted results and the experimental results for the 

composition dependence of 𝑆𝑆1 predicted based on our theoretical consideration at fixed 

𝐷𝐷1 𝐷𝐷2⁄ = 2. Now also taking into account our main supposition 𝑆𝑆 ≈ 𝑆𝑆0 for Al-rich Ni-

Al melts, on the basis of the results of MD simulations of Ni-Al melts, we should 

indicate that 𝐷𝐷1 𝐷𝐷2⁄ ~2, the ratio of the tracer diffusion coefficients in real Al-rich Ni-

Al melts. 

 

 

Figure 5: Composition dependence of the correction factor in Al-rich Ni-Al liquid 

alloy. The symbols and the dashed line represent, respectively, experimental (at 1173 K) [17] 

and theoretical (at fixed D1 D2⁄ = 2) data for S1 = L�cc D1⁄ . The thin and thick solid lines 

represent the theoretical data for S at fixed D1 D2⁄ = 1 and D1 D2⁄ = 2, respectively. 
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We can see from Fig. 4c that at 50% of Ag concentration 𝑊𝑊12 reaches its 

theoretical upper limit, namely it can not exceed 𝑘𝑘B𝑇𝑇. In other words, at about eutectic 

composition 𝑊𝑊12 pushes system to decomposition. Indeed, on Fig. 6 we can see the 

phase separation at both EAM calculations and experimental data for Cu-Ag melt [41]. 

 

 

Figure 6: Phase diagram of the Cu-Ag system. Filled symbols representing 

calculations using a thermodynamic model; open symbols where attained from the solid-melt 

interface simulations [41] 

 

Comprehensively, the presented theoretical treatment is a significant step to help 

analysing the relationship between the kinetic part of single-particle and collective 

diffusion dynamics in a binary melt which is not far from its equilibrium state. 

However, we remind that the term 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  is expected to deviate from its equilibrium 

range in the vicinity of a phase transition in the liquid state, as in cases of liquid-liquid 

demixing in addition to upon undercooling below equilibrium melting temperature. 

Additionally, the self-diffusion coefficients contributing to 𝑆𝑆0 may give a temperature 

dependence to 𝐿𝐿�𝑐𝑐𝑐𝑐 that is even more complex in the undercooled liquid state. The self-

diffusion coefficients in this state are rapidly reduced compared to higher 

temperatures. For future work it would therefore be compelling to study the 

temperature dependence of relative magnitude of these two contributions, 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄  

and 𝑆𝑆0, into 𝐿𝐿�𝑐𝑐𝑐𝑐 in the undercooled liquid states of different binary alloys. 
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Analogy with the Kirkwood-Buff Solution Theory 

Finally, we recall that the Kirkwood-Buff solution theory [42] gives a significant 

link between the thermodynamic factor Φ and the partial pair distribution functions 

𝑔𝑔𝛼𝛼𝛽𝛽(𝑟𝑟) of species 𝛼𝛼 and 𝛽𝛽 (𝛼𝛼,𝛽𝛽 = 1,2) in a binary melt, as: 

 

Φ =
𝑐𝑐1𝑐𝑐2
𝑘𝑘B𝑇𝑇

�
𝜕𝜕2(𝐺𝐺 𝑁𝑁⁄ )
𝜕𝜕𝑐𝑐𝛼𝛼2

�
𝑘𝑘,𝐶𝐶

=
𝑐𝑐𝛼𝛼
𝑘𝑘B𝑇𝑇

�
𝜕𝜕𝜇𝜇𝛼𝛼
𝜕𝜕𝑐𝑐𝛼𝛼

�
𝑘𝑘,𝐶𝐶

=
1

1 + 𝑐𝑐1𝑐𝑐2(𝐼𝐼11 + 𝐼𝐼22 − 2𝐼𝐼12),         (37) 

 

where 𝜇𝜇𝛼𝛼 denotes the chemical potential of species 𝛼𝛼, and 

 

𝐼𝐼𝛼𝛼𝛽𝛽 = 4𝜋𝜋
𝑁𝑁
𝑉𝑉
��𝑔𝑔𝛼𝛼𝛽𝛽(𝑟𝑟) − 1�
∞

0

𝑟𝑟2𝑑𝑑𝑟𝑟                                                   (38) 

 

denotes the so-called Kirkwood-Buff integrals. Physically, 𝑁𝑁
𝑉𝑉
𝑐𝑐𝛽𝛽𝑔𝑔𝛼𝛼𝛽𝛽(𝑟𝑟) is the 

average number density of atoms of species 𝛽𝛽 at a distance 𝑟𝑟 from an atom of species 

𝛼𝛼 fixed at the centre. Now, by taking Equations (6), (33)–(35) and (37) into 

consideration, then in a binary melt the interdiffusion coefficient, 𝐷𝐷𝑐𝑐, can now be 

expressed as: 

 

𝐷𝐷𝑐𝑐 = Φ𝐿𝐿�𝑐𝑐𝑐𝑐 = 

=
�1 + 𝑊𝑊12

𝑘𝑘B𝑇𝑇
� (𝑐𝑐2𝐷𝐷1 + 𝑐𝑐1𝐷𝐷2)

[1 + 𝑐𝑐1𝑐𝑐2(𝐼𝐼11 + 𝐼𝐼22 − 2𝐼𝐼12)] �1 + 𝑐𝑐1𝑐𝑐2
𝑚𝑚1
2𝐷𝐷12 + 𝑚𝑚2

2𝐷𝐷22 − 2𝑚𝑚1𝐷𝐷1𝑚𝑚2𝐷𝐷2
𝑚𝑚2𝐷𝐷1𝐷𝐷2

�
.           (39) 

 

By comparing the algebraic structures of the Kirkwood-Buff expression for the 

thermodynamic factor Φ and our expression for 𝑆𝑆0 a close affinity between them can 

be seen. Actually, the Kirkwood-Buff expression for the thermodynamic factor Φ 

gives quantification of the thermodynamic effect caused by deviation from random 

mixing on collective diffusion in terms of local structuring or rather chemical ordering 
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as 𝐼𝐼11 + 𝐼𝐼22 − 2𝐼𝐼12 (see Equation (38)). Where local structuring describes the relative 

preference of a species to be surrounded by another species. The decay of the excess 

or deficiency of atoms of species 𝛽𝛽 around atoms of species 𝛼𝛼, where the distance is 

expressed through space integrals of the partial pair correlation functions 𝑔𝑔𝛼𝛼𝛽𝛽(𝑟𝑟) − 1 

are relevant in regards to the thermodynamic factor Φ. In a similar manner quantifies 

our expression for 𝑆𝑆0 the kinetic effect on collective diffusion in terms of the relative 

difference in the decay of single-particle dynamics of different species with time 

phrased via the time integrals of the velocity autocorrelation functions of different 

species, as 𝑚𝑚1
2𝐷𝐷12+𝑚𝑚2

2𝐷𝐷22−2𝑚𝑚1𝐷𝐷1𝑚𝑚2𝐷𝐷2
𝑚𝑚2𝐷𝐷1𝐷𝐷2

 (see Equations (25) and (26)). Consequently, 𝑆𝑆0 =

�1 + 𝑐𝑐1𝑐𝑐2
𝑚𝑚1
2𝐷𝐷12+𝑚𝑚2

2𝐷𝐷22−2𝑚𝑚1𝐷𝐷1𝑚𝑚2𝐷𝐷2
𝑚𝑚2𝐷𝐷1𝐷𝐷2

�
−1

 expresses the kinetic factor of the interdiffusion 

coefficient given by Equation (39). Eventually, in binary melts, 𝑊𝑊12
𝑘𝑘B𝑘𝑘

 accounts for cross-

coupling between thermodynamic and collective kinetic effects in the interdiffusion 

processes. Indeed, it captures, according to Equation (28), the decay peculiarities of 

both space and time dependent correlations in dynamics of species in a binary melt. 

Nevertheless, further and extensive study of the properties of the factor 𝑊𝑊12
𝑘𝑘B𝑘𝑘

 are needed 

to propose any more quantitative claims. 

 

5.2.4 Conclusion 

Analysis of diffusion kinetics in binary melts with mixing tendency as well as 

demixing tendency were carried out in the framework of the Mori-Zwanzig formalism. 

For the first time, the Onsager coefficient for mass transport has been related to the 

two self-diffusion coefficients of species in binary melt through an analytical 

expression. The expression serves as an exceptional alternative option to the well-

known Darken equation. We presented the derived expression that includes the 

correction factor 𝑆𝑆 to the Darken equation.  

Additionally, the correction factor 𝑆𝑆 appears to break down into the product of 

two other factors as: 𝑆𝑆 = 𝑆𝑆0(1 + 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄ ). The first factor 𝑆𝑆0 ≤ 1 is expressed in 

terms of the ratio of the tracer diffusion coefficients 𝐷𝐷1 𝐷𝐷2⁄ , the ratio of the atomic 

masses 𝑚𝑚1 𝑚𝑚2⁄ , and the alloy composition. The second factor (1 + 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄ ) is 

related to a collective energy generation-dissipation effect (term 𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄ ) due to the 
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correlations between fluctuations of the interdiffusion flux and the force caused by the 

difference in the average random accelerations of atoms of different species. 

Evaluation of the recognizable different behaviour of the correction factor 𝑆𝑆 for melts 

in regards to their tendency of mixing shows that for binary mixing melts exhibiting 

mixing tendency (i.e. Ni-Al and Ni-Zr melts) the correction factor should typically be 

𝑆𝑆 < 𝑆𝑆0 (𝑊𝑊12 < 0), while for binary melts where precursors of liquid–liquid demixing 

are important (such as Cu-Ag melts) the correction factor should be 𝑆𝑆 > 𝑆𝑆0 (𝑊𝑊12 > 0). 

In the case of thermal equilibrium it was pointed out that for the correction factor 0 ≤

𝑆𝑆 ≤ 2𝑆𝑆0, due to a constraining effect of the energy of thermal fluctuations (|𝑊𝑊12| ≤

𝑘𝑘B𝑇𝑇). 

In addition, the extensive results of this study can be utilized to establish a 

concept of a binary liquid random alloy for which 𝑊𝑊12 = 0, so that the correction factor 

𝑆𝑆 = 𝑆𝑆0. A systematic comparison of results of binary systems with mixing tendency 

i.e. Ni-Al melts and Ni-Zr melts, as well as demixing tendency i.e. Cu-Ag, which has 

shown opposite behaviour of the correction factor 𝑆𝑆 and its contributions of 𝑆𝑆0 and 

𝑊𝑊12 𝑘𝑘B𝑇𝑇⁄ . Concluded with 𝑆𝑆 < 𝑆𝑆0 (𝑊𝑊12 < 0) for binary mixing melts with chemical 

ordering and 𝑆𝑆 > 𝑆𝑆0 (𝑊𝑊12 > 0) for binary demixing melts. 

Lastly, this study and the related theory significantly supports analysis for better, 

more in-depth interpretation of recent experimental data [17] on the correction factor 

to the Darken equation in Al-rich Ni-Al melts.  
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Chapter 6: Discussion of the Findings 

This chapter addresses the implications (Section 2.6) and objectives (Section 

2.7) of this research and discusses first, the main findings focussing on the Ni-Zr 

system, followed by a thorough insight into novel theoretical relations for the 

previously discussed different types of melts. The studied systems are selected due to 

their high technological interest and material properties, as it has been elaborated 

earlier in Chapter 2. The premise for the creation of databases for different systems is 

a result of their significance for the progress in research in this field. These databases 

build the foundation for development and verification of predictive measurements for 

coupled heat and mass transport in binary liquid alloys based on theoretical models 

that result in a better understanding of occurring phenomena. Finally, this helps to 

improve the design of new advanced materials, due to the profound insights into the 

diffusion dynamics at atomic scale. 

 

6.1 THE NI-ZR SYSTEM 

The main focus of this study is the binary system of simulated Ni-Zr melts. A 

detailed introduction on its importance and applicability relating to glass forming 

multicomponent systems is given in Chapter 3.  

For evaluation of diffusion, thermotransport and thermodynamic properties, the 

liquid binary melt is studied. Hence, the melting temperatures are of high interest. The 

simulation gives accurate results for the pure materials of Nickel and Zirconium, as 

well as the seven studied compositions. With help of the composition dependence of 

melting temperatures, 𝑇𝑇𝑚𝑚𝑒𝑒𝑙𝑙, and their validation with experimental results, the 

temperature range for further relevant calculations of diffusion properties including 

𝐷𝐷𝑁𝑁𝑁𝑁, 𝐷𝐷𝑍𝑍𝑟𝑟 and 𝐿𝐿�𝑐𝑐𝑐𝑐 is selected between 2200 K – 1200 K. To further confirm the onset 

of crystallisation, calculations of the pair distribution function, 𝑔𝑔(𝑟𝑟), are used and 

visualised. Based on the distribution of peaks of the graphs of different temperatures, 

the transformation shows a change of atomic ordering and when taking the ratio of the 

peaks, confirming crystallisation patterns. One example of the applied pair distribution 

function on the model melts of pure Ni is shown in Figure 4. The evolution of peaks 
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is distinct between the different temperatures and can clearly be seen in the highlighted 

section of the graph.  

 

Figure 4 Pair distribution function applied to the model melt of pure Ni 
 

 

6.1.1 Tracer- and Collective Diffusion 

Diffusion processes generally follow the Arrhenius law. This is important for the 

calculation of the activation energy, 𝐸𝐸𝐴𝐴, of the diffusion process, and a temperature 

independent pre-factor, 𝐷𝐷0. During treatment of the simulation data, fits according to 

the Arrhenius law are performed in the temperature range determined for diffusion 

processes between 2200 K – 1200 K, however notable deviations are found. For further 

calculations to obtain values for the parameters of 𝐸𝐸𝐴𝐴 and 𝐷𝐷0, it is found that the best 

fit is possible for the temperature range between 2200 K – 1400 K. Here, for the models 

of pure Zr and Ni75Zr25 and their crystallisation at 1550 K and 1650 K respectively, 

data is extrapolated.  
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First, temperature dependence graphs are created for the visualisation of the 

calculated data of self-diffusion coefficients of Ni and Zr in models of their pure melts 

respectively, alongside available experimental data for Ni [77,78]. The results reveal 

a very good agreement in the case of Ni, as can be seen in Figure 5. Due to limitations 

that arise during experiments and therefore a lack of available measurements in case 

of Zr, no experimental values are found. According to further experimental results of 

𝐷𝐷𝑍𝑍𝑟𝑟 in binary Ni-Zr melts and its very good agreement of presented simulation data, 

one can assume, that the accuracy of the self-diffusion coefficient relating to the pure 

Zr melt model to be of high quality. These graphs are Arrhenius type plots and include 

the Arrhenius fits based on the calculated Arrhenius parameters for the activation 

energy and pre-exponential factor, to give a detailed overview for each considered 

composition. Available experimental data is included within the graphs next to the 

simulation data and carefully compared. Here, for both self-diffusion coefficients, the 

results are in good agreement for the different model systems. The model system of 

Ni62.5Zr37.5 displaying the best agreement with experimental data [7,8], and is shown 

in Figure 5. While for the systems of Ni50Zr50 and Ni37.5Zr62.5 the results for 𝐷𝐷𝑁𝑁𝑁𝑁 are 

also in good agreement, the simulation slightly overestimates experimental results. 

The values of the self-diffusion coefficient of Zr, 𝐷𝐷𝑍𝑍𝑟𝑟, from experiments inarguably 

harder to obtain, lie as a consequence of error of experimental measurements, tightly 

spread around the simulation data of the model system Ni37.5Zr62.5. 

 

 

Figure 5 Self-diffusion coefficients 
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Second, the kinetic part of the interdiffusion coefficient, 𝐿𝐿�𝑐𝑐𝑐𝑐, is identified. By 

making use of the Green-Kubo formalism, this value is obtained through the 

normalised autocorrelation function of the interdiffusion flux and its time integral. 

After extensive literature review, no experimental data on the kinetic part of 

interdiffusion could be found. This showcases the importance of creating a complete 

database on the Ni-Zr system, with the ability to make valid predictions for diffusion 

properties. The detailed explanation of evaluation of 𝐿𝐿�𝑐𝑐𝑐𝑐 can be found in Chapter 3.  

Results for the diffusion coefficients and Arrhenius parameters for binary Ni-Zr 

melts are gathered in Table 1 and Table 2 respectively in Section 3.2. Due to formatting 

reasons, the temperature step presented equals ∆100 𝐾𝐾, while all calculations were 

performed and data therefore also available for the temperature step of ∆50 𝐾𝐾 in the 

given temperature range. Thus, allowing a more precise evaluation of the diffusion 

behaviours.  

For further insights into theoretical relations, the composition dependencies of 

diffusion coefficients (𝐷𝐷𝑁𝑁𝑁𝑁 , 𝐷𝐷𝑍𝑍𝑟𝑟 , and 𝐿𝐿�𝑐𝑐𝑐𝑐) are studied and trends, minima, and maxima 

evaluated. The results show minima of similar shape in the composition region 

between 0.625 < 𝑐𝑐𝑁𝑁𝑁𝑁 < 0.75 for all diffusion coefficients. The data, based on a set of 

Arrhenius parameters, allow to encode a diffusion coefficient and its temperature 

dependence. In addition, after extrapolation using the Arrhenius parameters to 

visualise lower temperatures, the greatest dynamical slowdown of diffusion dynamics 

in the melts is observed for the model system of Ni62.5Zr37.5. 

 

6.1.2 Decoupling of Self-Diffusion Coefficients 

Next, for evaluation of decoupling behaviour of the diffusion coefficients of Ni 

and Zr, 𝐷𝐷𝑁𝑁𝑁𝑁 and 𝐷𝐷𝑍𝑍𝑟𝑟 respectively, their ratio is inspected. By calculation of 𝐷𝐷𝑁𝑁𝑁𝑁 𝐷𝐷𝑍𝑍𝑟𝑟⁄ , 

a considerable decoupling towards the Ni-rich side of the system models is found and 

shown in Figure 6, alongside experimental data [8,63]. The greatest decoupling of the 

self-diffusion coefficients for the model system of Ni87.5Zr12.5 occurred at a value of 

3.3 at a temperature of 1200 K. This is one temperature step before its simulated 

crystallisation at 1150 K. More extrapolated data is also taken into consideration 

showing values that exceed the original set of data. Here, for the model system Ni75Zr25 

the extrapolation shows the behaviour for undercooling of the melt down to 1200 K 
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while avoiding crystallisation, with the strongest decoupling of self-diffusion 

coefficients. Existing experimental data [8,63] is taken into consideration for 

validation of the simulation results and shows good agreement.  

The Ni-Zr system is a type of melt with mixing tendency, showcasing 

pronounced chemical short-range order of atoms. This means that in theory, it should 

supress such decoupling of diffusion. Further insights into the origin of the occurring 

decoupling was argued in [8,63] relating to the interaction of Ni and Zr atoms with 

each other. Due to a saturation effect of available Ni-Zr pairs that interact very strong 

to one another towards the Ni-rich side, the number of Zr decreases, while the 

remaining Ni atoms now only find other residual Ni atoms to pair with, creating Ni-Ni 

pairs. As a consequence, the fraction of Ni-Zr pairs beyond saturation is followed by 

an increase of the weaker couple Ni-Ni pairs. Finally, this adds to the diffusion 

mobility in melts of Ni-rich compositions.  

Now taking into consideration the overview of the ratio of the self-diffusion 

coefficients, a value greater than one is dominant over the studied temperature and 

composition range. This again indicates stronger bonds of Zr atoms to next-near 

neighbours compared to Ni atoms, as was previously discussed in [8]. This implies 

that a greater amount of thermal energy is required for breaking the bonds of Zr atoms. 

Now, with decreasing temperature, the available amount of thermal energy decreases 

also. As a result, the motion of Zr atoms slows down in a more rapid manner than of 

Ni atoms, due to the energy landscape. In conclusion, the observed decoupling for 

lower temperatures is related to a change of diffusion behaviour transitioning from a 

liquid-like motion towards the energy landscape controlled regime [8,79]. 

The gained insights into binary melts of Ni-Zr can be translated, to a certain 

extent, towards Zr-based multicomponent systems and used for further interpretation. 

Vitreloy 4 for instance, is the name of a commercialised amorphous alloy developed 

by the California Institute of Technology, Caltech. This glass-forming alloy consists 

of Zr46.75Be27.5Ti8.25Cu7.5Ni10 exhibiting a strong decoupling of components, with a 

ratio of 𝐷𝐷𝑁𝑁𝑁𝑁 𝐷𝐷𝑍𝑍𝑟𝑟⁄ ≈ 4 close to its liquidus temperature 1050 K [80]. After extrapolation 

of the data above 1200 K, the ratio further decreases to a factor of less than two for the 

self-diffusion coefficients of Ni and Zr according to [8], which again relates to the 

previously discussed influence of the energy landscape. Observation of the 
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extrapolated results of the ratio of the multicomponent system are in close agreement 

with the presented simulation data of the binary Ni-Zr melts at 1200 K.  

Returning to the results for the binary system, a ratio between 1.2 ≲ 𝐷𝐷𝑁𝑁𝑁𝑁 𝐷𝐷𝑍𝑍𝑟𝑟⁄ ≲

1.3 the decoupling of the self-diffusion coefficients is the smallest for the composition 

range of 0.375 ≲ 𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.5. It is also shown that for this composition range, the ratio 

𝐷𝐷𝑁𝑁𝑁𝑁 𝐷𝐷𝑍𝑍𝑟𝑟⁄  stays the same, regardless of the temperature. This temperature independence 

leads to the conclusion, that in this composition range, the influence related to the 

decoupling of both self-diffusion coefficients due to the energy landscape, is the least 

affected. Hence, diffusion dynamics in this composition range slow down, independent 

of temperature. 

 

Figure 6 Decoupling of self-diffusion coefficients 
 

 

6.1.3 Correction Factor 𝑺𝑺 

To elaborate microscopic cross-correlation effects in terms of the kinetic part of 

collective diffusion, the correction factor, 𝑆𝑆, is studied carefully. The factor relates to 

the concentrations of Ni and Zr, the kinetic part of interdiffusion and self-diffusion 

coefficients. Additional decomposition of the correction factor into its kinetic factor 

𝑆𝑆0 and the collective energy generation-dissipation theorem allows for further in-depth 

understanding of diffusion dynamics occurring in the melts.  
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The composition dependence of 𝑆𝑆 = 𝐿𝐿�𝑐𝑐𝑐𝑐 (𝑐𝑐𝑍𝑍𝑟𝑟𝐷𝐷𝑁𝑁𝑁𝑁 + 𝑐𝑐𝑁𝑁𝑁𝑁𝐷𝐷𝑍𝑍𝑟𝑟)⁄   is evaluated for 

the temperature range between 2200 K and 1200 K, as can be seen in Figure 7. It shows 

typical behaviour for a binary melt with mixing tendency i.e. 𝑆𝑆 < 1 over the whole 

composition range in the normal liquid state of the melt. This type of behaviour is 

expected and was previously studied for binary Ni-Al melts [14,15,67,81-83] and 

confirms the discussed theory of previous sections. Hence, for this type of melt, 

collective diffusion dynamics are expected to slow down with an increase of its 

minority species concentration towards equi-atomic composition [14,15,67,82,83]. 

The observed values of 𝑆𝑆 with its minimum between 0.5 ≲ 𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.625 support the 

elaborated insight. The absolute minimum can be estimated at approximately 𝑆𝑆𝑚𝑚𝑁𝑁𝑛𝑛 ≈

0.67 and is practically independent of temperature.  

 

Figure 7 Correction factor 
 

Further study of the decomposed contributions towards the correction factor are 

divided into terms of 𝑆𝑆0 and 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄ . Taking into account single-particle kinetic 

effects, as well as the collective energy generation-dissipation effect into the correction 

factor, 𝑆𝑆0 gives interesting insight into its factorisation with 𝑆𝑆0 = [1 +

𝑐𝑐𝑁𝑁𝑁𝑁𝑐𝑐𝑍𝑍𝑟𝑟(𝑚𝑚𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁 − 𝑚𝑚𝑍𝑍𝑟𝑟𝐷𝐷𝑍𝑍𝑟𝑟)2/𝑚𝑚2𝐷𝐷𝑁𝑁𝑁𝑁𝐷𝐷𝑍𝑍𝑟𝑟]−1. Now this part of the contribution gets 

particularly interesting for the models of the Ni-Zr system, due to its mass ratio 

between the components and the ratio of self-diffusion coefficients. Looking at the 

mass ratio (𝑚𝑚𝑁𝑁𝑁𝑁 𝑚𝑚𝑍𝑍𝑟𝑟⁄ ≈ 58.69 91.22⁄ ≈ 0.64), the heavier Zr species also hold the 
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smaller diffusion coefficient. The observed value 𝑆𝑆0 ≈ 1 over the composition range 

in the normal liquid state is a result of the mass ratio damping the effect on the increase 

of the ratio of diffusion coefficients 𝐷𝐷𝑁𝑁𝑁𝑁 𝐷𝐷𝑍𝑍𝑟𝑟⁄  above unity (ranges between 1.2 and 1.8 

at high temperatures). 

However, upon undercooling a significant drop of 𝑆𝑆0 below unity down to 0.92 

is simulated for the model of Ni87.5Zr12.5. To understand the origin for this type of 

behaviour, one needs to look at the ratio of diffusion coefficients again (see Figure 6). 

It is shown that a strong decoupling of self-diffusion for different species occurred for 

this model system at a temperature of 1200 K, reaching about 𝐷𝐷𝑁𝑁𝑁𝑁 𝐷𝐷𝑍𝑍𝑟𝑟⁄ ≈ 3.3, hence 

outweighing the damping effect resulting in this considerable reduction of 𝑆𝑆0.  

Now looking into the term of 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄ , its composition dependence is shown 

in Figure 8. This term is closely related to the previously discussed collective energy 

generation-dissipation effect resulting of fluctuations of the interdiffusion flux, 𝐽𝐽𝐶𝐶, and 

the force, 𝑅𝑅12(𝑡𝑡). Its composition dependence for the binary Ni-Zr model melts is 

found to closely follow the behaviour of 𝑆𝑆, shifted up by one. Upon undercooling of 

the melts, its sign becomes positive towards both ends, the Ni-rich and the Zr-rich side 

reaching up to 0.48 and 0.08 for the models of Ni87.5Zr12.5 and Ni12.5Zr87.5 respectively 

at a temperature of 1200 K, which is one temperature step away from their 

crystallisations at 1150 K. This behaviour correlates to the composition dependence of 

the ratio of self-diffusion coefficients in binary Ni-Zr melts (see Figure 6) and 

demonstrates, upon undercooling, heterogeneous behaviour of atomic dynamics in the 

melt as a consequence of entering the energy landscape controlled regime [8,79]. 

In conclusion, the decoupling of 𝐷𝐷𝑁𝑁𝑁𝑁 and 𝐷𝐷𝑍𝑍𝑟𝑟 in the models towards the Ni-rich 

side upon undercooling decrease 𝑆𝑆0, accounting for single-particle kinetic effects and 

their contribution into the correction factor, 𝑆𝑆. On the other hand, 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄ , 

accounting for a collective energy generation-dissipation effect and its contribution 

into 𝑆𝑆, is enlarged further by a transition to diffusion behaviour that approaches the 

energy landscape controlled regime. Finally this results in a considerable increase of 

the correction factor, 𝑆𝑆, above unity on the Ni-rich side. 
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Figure 8 Collective energy generation-dissipation effect 
 

 

6.1.4 Enthalpy 

In addition, the previously discussed correction factor and its composition 

dependence, follow a similar shape compared to the composition dependence of the 

enthalpy of mixing calculated per atom, ℎ𝑚𝑚 = ℎ − 𝑐𝑐𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁∗ − 𝑐𝑐𝑍𝑍𝑟𝑟ℎ𝑍𝑍𝑟𝑟∗ . Here, the total 

enthalpy of the model systems of Ni-Zr melts are described as ℎ, where ℎ𝑁𝑁𝑁𝑁∗  and ℎ𝑍𝑍𝑟𝑟∗  

describe the enthalpies of the models of pure Ni and Zr melts respectively. Figure 9 

shows the calculated composition dependence of the enthalpy of mixing values. Due 

to crystallisation occurring in the simulated Zr melt at 1550 K, the evaluated 

temperature range of ℎ𝑚𝑚 based on the simulation was limited to a temperature range 

of 2200 K to 1600 K and is compared to existing experimental data on thermodynamic 

properties [84]. Simulated data shows good agreement towards the Ni-rich side, 

however some error towards the Zr-rich side plus some sort of shift of the minimum 

in the simulation results from equi-atomic towards the Ni-rich side are evident.  
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Figure 9 Enthalpy of mixing 
 

 

6.1.5 Fluctuations between 𝑹𝑹𝑹𝑹𝑹𝑹(𝒕𝒕) and 𝑱𝑱𝑱𝑱(𝟎𝟎) 

It was previously shown in Section 3.2, that the novel, dimensionless factor 𝜎𝜎12 

is used for evaluation of the initial sign of the correlation between the interdiffusion 

flux, 𝐽𝐽𝐶𝐶, and its fluctuations with the force, 𝑅𝑅12(𝑡𝑡), as a result of different average 

random accelerations of Ni- and Zr atoms. The simulated composition dependence 

shows only weak temperature dependence (see Figure 10), hence for normal and 

undercooled liquid states of the model systems the behaviour of 𝜎𝜎12 is typical for 

binary melts with chemical ordering, displaying negative values of the whole 

composition range. Its trend is very similar compared to the behaviour of the graph of 

𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄  (see Figure 8). Looking into the normal liquid state, the minimum of 𝜎𝜎12 is 

between 0.5 ≲ 𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.625. Although it is important to note that it remains negative 

across the composition range and changes only slightly upon undercooling, contrary 

to the composition dependence of 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄ .  
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Figure 10 Dimensionless factor 𝜎𝜎12 
 

Conclusively, the insights of 𝜎𝜎12 in combination with gained relations of 

𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄  lead to the understanding, that the positive values of the latter, which are 

shown for the models of Ni87.5Zr12.5 and Ni12.5Zr87.5 at 1200 K, depict a change of 

atomic dynamics of the melt that occur ahead of onset of their crystallisation at 1150 

K. In other words, the early obtuse angle between 𝑅𝑅12(𝑡𝑡) and 𝐽𝐽𝐶𝐶(0) which is described 

by a value greater than zero for 𝜎𝜎12, converts into an acute angle to further act on 

fluctuations of atomic ordering towards a thermodynamically more stable state for the 

model systems of Ni87.5Zr12.5 and Ni12.5Zr87.5 and increase their amplitude and hence, 

𝑊𝑊12 > 0.  

The first of the two alloy systems is stronger affected than the latter. This agrees 

with the observation of a negative value for 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄  for enriched model systems 

upon undercooling. Here, the behaviour in the range of 0.25 ≲ 𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.375 is hardly 

affected by temperature; meanwhile at a temperature of 1200 K, with increasing Ni 

content of the alloys, starting to rise toward zero more progressively. Finally 

suggesting that, within this composition range the occurring transitioning of normal 

states as well as undercooled liquid states of the model systems for the binary Ni-Zr 

melts happen very smooth. Therefore, preventing any significant changes of collective 

diffusion dynamics of the melts. 

 



 

112 Chapter 6: Discussion of the Findings 

6.1.6 Glass Forming Ability 

The glass-forming ability of an alloy is strongly related to its stability against 

crystallisation upon undercooling, hence a thorough understanding of its diffusion 

dynamics and atomic ordering is crucial [85-88]. Firstly, recalling the earlier 

discussion of single-particle diffusion dynamics of the melts (see Section 6.1.2) in 

terms of decoupling of the diffusion coefficients. After evaluation of occurring 

dynamics of the melt it is discussed that the composition range with the smallest 

decoupling is also practically independent of temperature (composition range 0.375 ≲

𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.5). 

Further investigation of the decoupling of self-diffusion coefficients (see Section 

6.1.2) and also changes of the collective diffusion dynamics based on fluctuations of 

𝑅𝑅12(𝑡𝑡) and 𝐽𝐽𝐶𝐶(0) (see Section 6.1.5) show, that the composition range between 0.25 ≲

𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.5 demonstrates a slowdown of i) single- particle and ii) collective diffusion 

dynamics of the melt upon undercooling. This homogeneous dynamical type of 

behaviour relates to increased stability of the model melts against their crystallisation, 

thus exhibiting pronounced glass-forming ability in this composition range.  

 

6.2 DIFFUSION KINETICS – A SUMMARY FOR DIFFERENT TYPES OF 
MELT 

This section discusses the insights and novel understanding of diffusion kinetics 

of melts for different types i) with chemical ordering and ii) with phase separation 

tendencies. Based on previous work and their resulting molecular dynamics data 

[10,14,16,73], theoretical relations are applied and for further investigation compared 

in [11]. The main focus of the mass transport properties in this section are related to 

microscopic cross-correlation effects that arise in the melt upon undercooling and 

influence atomic stability of the melt against crystallisation. For the main system of 

this study, the models of binary Ni-Zr, this discussion was previously covered in 

Section 6.1. The additional model systems of Ni-Al and Cu-Ag are ideal candidates 

for further insight due to their importance in the field of engineering [80,89-94]. 

Additionally, they represent melts with different types of tendencies, with Ni-Al 

representing chemical ordering, and Cu-Ag representing clustering, recalling that the 

Ni-Zr system belongs to the first group, of chemical ordering. Hence an interesting 
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comparison of two model systems with similar tendencies reveal an even more 

thorough insight on the impact of different factors (Ni-Zr and Ni-Al), meanwhile the 

Cu-Ag system is used to predict contrary behaviours. For this matter, the properties of 

𝑆𝑆, 𝑆𝑆0, and 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄  are analysed and compared in conjunction with gained 

understandings of the correlations between fluctuations of 𝑅𝑅12(𝑡𝑡) and 𝐽𝐽𝐶𝐶(0).  

 

6.2.1 Binary Liquid Alloys with Mixing Tendency 

Firstly, decomposition of the correction factor, 𝑆𝑆, reveals its dependence on self- 

and collective diffusion of a binary melt. According to novel theoretical relations 

established in Section 5.2 for types of melt with chemical ordering, it is expected that 

𝑆𝑆 < 𝑆𝑆0 (𝑊𝑊12 < 0). Investigation of the model systems of Ni-Al reveals a value for the 

correction factor, 𝑆𝑆, across the composition range of less than unity, and similar 

behaviour in the normal liquid state compared to the models of Ni-Zr. The minima 

located in the range between 0.5 ≲ 𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.625 for the Ni-Al model systems 

resembles the composition dependence of Ni-Zr model systems, but shows even less 

temperature dependence. The behaviour of the correction factor depicts the slowdown 

of collective diffusion kinetics upon an increase of the minority species toward the 

equi-atomic composition concentration.  

Now, further investigation of the first factor, 𝑆𝑆0, after decomposing the 

correction factor (see Sections 3.2 and 5.2 for methodological approach), illustrates a 

significant different trend than the composition dependence of Ni-Zr melts. This factor 

depends on the ratio of mass, 𝑚𝑚1 𝑚𝑚2⁄ , as well as self-diffusion coefficients of atoms 

of different species, 𝐷𝐷1 𝐷𝐷2⁄ . For instance, the Ni-Al system holds a mass ratio of 

𝑚𝑚𝑁𝑁𝑁𝑁 𝑚𝑚𝐴𝐴𝑙𝑙⁄ ≈ 58.69 26.98⁄ ≈ 2.18, where the heavier species also possesses the 

greater self-diffusion coefficient (further discussion on the diffusion coefficient of Al 

in Ni-Al follows later in this section). As a consequence, 𝑆𝑆0 is reduced below unity 

across the composition range with its minimum for normal liquid states of 0.85 located 

in the vicinity of the equi-atomic composition. The composition wide reduction is a 

result that is amplified by the mass ratio in conjunction with an increase of the ratio of 

self-diffusion coefficients above unity. Here it is important to note, that compared to 

the model systems of Ni-Zr melts, also exhibiting chemical ordering tendency, this 

effect is remarkably damped by its mass ratio (𝑚𝑚𝑁𝑁𝑁𝑁 𝑚𝑚𝑍𝑍𝑟𝑟⁄ ≈ 58.69 91.22⁄ ≈ 0.64), 
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demonstrated by the behaviour of 𝑆𝑆0 ≈ 1 across different compositions in normal 

liquid states. 

Lastly, the composition dependence of 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄  shown in Chapter 5, identifies 

for composition on the Al-rich side with 𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.125 a behaviour of |𝑊𝑊12| 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ≲

0.3. The sign of the graph is negative in the normal liquid state and remains so upon 

undercooling, which is in contrast to the model systems of studied Ni-Zr melts. It 

concludes, the impact on the correction factor, 𝑆𝑆, which as a result is 3% smaller than 

its first factor, 𝑆𝑆0. Therefore, the suggested concept of a binary liquid random alloy is 

applicable for discussed Al-rich liquid alloys of the binary model system Ni-Al. 

Finally, one can assume that 𝑆𝑆 ≈ 𝑆𝑆0 for real Al-rich compositions of binary Ni-Al 

melts. The obtained results support further investigation of recent experimental data 

[83], by making use of this novel insight. 

In addition to the previously discussed self-diffusion coefficients of Al, one 

needs to know that, due to limitations of measuring capabilities in experiments that 

arise due to i) lack of isotopes and ii) a low coherent cross section for scattering of Al, 

the ratio of diffusion coefficients in binary melts of Ni-Al were considered to be 

roughly equal with 𝐷𝐷𝑁𝑁𝑁𝑁 ≈ 𝐷𝐷𝐴𝐴𝑙𝑙 [83]. Application of the developed theoretical relations 

𝑆𝑆1 = 𝐿𝐿�𝐶𝐶𝐶𝐶 𝐷𝐷1⁄  (see Section 3.2 and 5.2), that in case of the assumed [83] 𝐷𝐷𝑁𝑁𝑁𝑁 = 𝐷𝐷𝐴𝐴𝑙𝑙 

then 𝑆𝑆1 = 𝑆𝑆. However, the influence of the ratio of diffusion coefficients, 𝐷𝐷1 𝐷𝐷2⁄ , if 

reached a value above unity on the correction factor is significant, since for binary 

melts exhibiting chemical ordering 𝑆𝑆 ≈ 𝑆𝑆0, for instance the Ni-Al system. This was 

taken into account when the correction factor, 𝑆𝑆, was calculated and compared to 

existing experimental data from [83] with assumed ratio of self-diffusion coefficients 

𝐷𝐷𝑁𝑁𝑁𝑁 ≈ 𝐷𝐷𝐴𝐴𝑙𝑙. Ultimately it is concluded, that a much better agreement with experimental 

data is obtained, when assumed ratio shifts toward a value of two is used (see Section 

5.2). Hence expressing that 𝐷𝐷1 𝐷𝐷2⁄ ~2 in real Al-rich Ni-Al melts.  

 

6.2.2 Binary Liquid Alloys with Demixing Tendency 

Analogous to the discussion of binary liquid alloys with mixing tendency, now 

follows further insight into binary liquid alloys with clustering tendency based on 

previous molecular dynamics simulation results of the Cu-Ag system [16]. Given the 

newly established theoretical relations in Section 5.2 for types of melt with demixing 
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tendency, it is expected that 𝑆𝑆 > 𝑆𝑆0 (𝑊𝑊12 > 0). Upon first inspection of the correction 

factor, 𝑆𝑆, of the model systems of Cu-Ag [16], the novel theory could be confirmed. 

The behaviour of its composition dependence shows clear contrary behaviour 

compared to the model systems of Ni-Zr and Ni-Al. Its value is greater than unity 

across the composition range with a maximum of 1.91 for the equi-atomic alloy 

Cu50Ag50 at 1000 K (see graph in Chapter 5). The form of the maximum plateaus 

toward the Ag-rich side with a concentration of 0.5 ≲ 𝑐𝑐𝐴𝐴𝑔𝑔 ≲ 0.875. Occurring 

microscopic cross-correlation effects of the kinetic part of collective diffusion in terms 

of the correction factor, are amplified for the Cu-Ag models with a decrease of 

temperature.  

Next, the inspection of 𝑊𝑊12 reveals insight into the systems behaviour of phase 

transitioning of atoms of different species. According to the established theoretical 

approach, one can see 𝑊𝑊12 > 0 across the whole composition range. Simulation results 

[16] evaluated with the EAM potential developed in [95] depict the term 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄ , 

reaching a close approximation of unity at 1000 K for the vicinity of its eutectic point.  

As a result, it is expected that 𝑆𝑆 ≲ 2 in real Cu-Ag melts, when the self-diffusion 

coefficients are approximated to be roughly equal with 𝐷𝐷𝐶𝐶𝐶𝐶 𝐷𝐷𝐴𝐴𝑔𝑔⁄ ~1. This is 

reasonable, when also taking their atomic mass into consideration, 𝑚𝑚𝐶𝐶𝐶𝐶 𝑚𝑚𝐴𝐴𝑔𝑔⁄ ≈

63.55 107.87⁄ ≈ 0.59. The behaviour of the graph of 𝑊𝑊12 𝑘𝑘𝐵𝐵𝑇𝑇⁄  is found to approach 

its theoretical upper limit for the equi-atomic melt since it cannot exceed 𝑘𝑘𝐵𝐵𝑇𝑇, 

demonstrating the model melts promotion to decompose.  
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Chapter 7: Conclusion and Outlook 

7.1 CONCLUSIONS 

Novel insights into diffusion, thermotransport and thermodynamic properties of 

binary liquid melts of model systems of Ni-Zr have successfully been revealed, 

established and applied by the author within the scope of the PhD program. To 

showcase applicability and reach of gained understandings, further studies of different 

types of melt based on previous work conducted [14,16,73], have been analysed and 

concluded in different type of behaviour for melts of different types in terms of atomic 

ordering and their tendency of mixing or clustering. The content presented tackles the 

lack of understanding in the complex field of diffusion and thermodynamic properties 

of melts. Processes in the melt on atomic scale that affect their microstructure and 

material properties have been studied and theoretical relations established. Thorough 

investigation on the topics of self-diffusion coefficient, interdiffusion, decoupling 

behaviours, correction factor, enthalpy, collective energy generation-dissipation 

effect, and time correlation functions helps bridging the gap, which slows down the 

profound understanding, production, and development of advanced materials. These 

insights are addressed separately in the previous discussion chapter (Chapter 6). The 

following section gives information, summarising the previously focused insights 

relating to the objectives of this thesis. 

The molecular dynamics method was used with a semi-empirical many-body 

interatomic potential to create an extensive database on the discussed material 

properties for the binary system of Ni-Zr melts. Simulation results were carefully 

compared to existing experimental data to ensure their quality and reliability. The 

approach using mechanical statistics and atomistic modelling, demonstrates cross-

correlation effects between single-particle and collective diffusion dynamics in the 

melt. Further investigation into the stability of the melt in short time limit 𝑡𝑡 → 0 upon 

undercooling determining the composition range 0.25 ≲ 𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.5 as viable glass 

formers due to the manifestation of a homogeneous slowdown of diffusion dynamics, 

which indicates enhanced stability of the undercooled melt against its crystallisation. 
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In addition, the correction factor, 𝑆𝑆, was decomposed for advanced investigation 

of atomic ordering behaviour of the melt upon undercooling. Here, using the gained 

novel understandings of fluctuations between 𝑅𝑅12(𝑡𝑡) and 𝐽𝐽𝐶𝐶(0), to establish conditions 

to describe dynamical stability of the melt and the transition toward a more 

thermodynamically stable state. It was found that for the model systems of binary 

liquid Ni-Zr melts the obtuse angle (𝜎𝜎12(0)) between 𝑅𝑅12(𝑡𝑡) and 𝐽𝐽𝐶𝐶(0) in 

hydrodynamic limit 𝑡𝑡 → 0 remains as it is related to its negative value of 𝑊𝑊12 < 0 

describing the average amount of generated-dissipated energy. Furthermore, 𝑊𝑊12 and 

its behaviour in terms of a relative change, can be utilised to show a variation of 

stability of atomic ordering upon undercooling and as a result the above mentioned 

obtuse angle can transform to an acute angle (now 𝑊𝑊12 > 0) for promotion of the 

binary mixing melt toward a more thermodynamically stable state. The extensive work 

on binary melts of the Ni-Zr system has been concluded in an accurate and 

comprehensive database on its diffusion, thermotransport and thermodynamic 

properties based on molecular dynamics simulation with state-of-the-art semi-

empirical many-body interatomic potential and acts as immense support for the 

decision making process of future experiments, processing routes and compositions.  

New innovative theoretical relations were established for the treatment of 

thermotransport properties in different types of binary melts. By making use of 

Langevin equations, velocity auto-correlation functions, tracer memory kernels and 

random forces that act on atoms of different species, an improved understanding of an 

alternative expression for the interdiffusion flux was derived. Next, the frequency 

dependency of tracer diffusion coefficients was taken into account to comment on the 

correlation between 𝑅𝑅12(𝑡𝑡) and 𝐽𝐽𝐶𝐶(0) in order to reveal the different types of behaviour 

of melts with i) chemical ordering and ii) demixing tendency in terms of stability of 

the melt against crystallisation. The previous study into the systems of Ni-Al and Cu-

Ag showcased dissimilar behaviour for the different melt types, but also for melts 

within one group (Ni-Al and Ni-Zr both belong to the chemical ordering type of melt).  

Finally, a clear distinction of conditions was found to describe atomic ordering 

properties of the different types of melt. This novel insight determines, that for the 

correction factor 𝑆𝑆 = 𝑆𝑆0 when 𝑊𝑊12 = 0. In terms of the different melts it has been 

derived that for binary mixing melts exhibiting chemical ordering, 𝑆𝑆 < 𝑆𝑆0 (𝑊𝑊12 < 0); 

meanwhile melts with demixing tendency indicate opposite behaviour terms of 𝑆𝑆 >
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𝑆𝑆0 (𝑊𝑊12 > 0). This approach and its established theory is very useful for the 

interpretation of experimental data related to the Darken Equation and also for 

advanced investigation of the correction factor.  

 

7.2 OUTLOOK 

In the field of research, any type of study is always considered a work in 

progress. Hence, there is always more options, different perspectives and further 

advancement possible in countless ways. Following are some recommendations that 

should be considered pursuing for future research: 

• For the Ni-Zr system further study of the identified viable glass forming 

range of 0.25 ≲ 𝑐𝑐𝑁𝑁𝑁𝑁 ≲ 0.5 in terms of its evolution of disordered 

structure upon undercooling i.e. connectivity network of icosahedra 

sharing common atoms percolates disordered structure as undercooled 

monoatomic melts forms glass. 

• Advanced insights into the topic of enthalpy for the model system for Ni-

Zr melts, for instance the more detailed use of partial enthalpies in order 

to describe thermotransport properties.  

• The applied theoretical approach can be used for investigation of other 

binary model systems of high technological interest to create databases 

on their respective material properties. Then, extensive investigation of 

cross-links between different systems and their behaviours can be used 

to increase quality and efficiency of both, the simulation and 

experimental side for the development of viable glass formers and their 

production.  
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